
DM582 Solutions

Mads Anker Nielsen
madsn20@student.sdu.dk

February 26, 2024

This document contains written solution to exercise problems from the
course DM582 (spring 2024). The solutions given here might differ from the
solutions discussed in class. In class, we place more emphasis on the intuition
leading to the correct answer. Please do not consider reading these solutions
an alternative to attending the exercise classes.

References to CLRS refer to the book Introduction to Algorithms, 4th
edition by Cormen, Leiserson, Rivest, and Stein.

This document will inevitably contain mistakes. If you find some, please
report them to me (Mads) so that I can correct them.

1



Sheet 2

CLRS, 24.2-3

Exercise

Show the execution of the Edmonds-Karp algorithm on the flow network
of Figure 24.1(a).

Suggested solution
See next page. I hope you can make out what it says.

2



3



CLRS, 24.2-7

Exercise

Prove lemma 24.2.

Lemma 24.2. Let G = (V,E) be a flow network, let f be a flow in G,
and let p be an augmenting path in Gf . Define a function fp : V ×V → R
by

fp(u, v) =

{
cf (p) if (u, v) is on p,

0 otherwise

Then, fp is a flow in Gf with value |fp| = cf (p) > 0.

Suggested solution
Note: Recall that an augmenting path is simple by definition.

First, we argue that fp satisfies flow conservation. To see this, consider
an arbitrary vertex v ∈ V (G) \ {s, t}. If v is not on p then the flow in and
out of v is 0. If v is on p then, by the definition of fp and since p is a simple
path, there is exactly one arc uv entering v and exactly one arc vu′ leaving
v with fp(u, v) = fp(v, u

′) = cf (p). Hence, flow is conserved at v.
Next, we argue that fp respects the capacity constraint cf . An arc uv not

on p has no flow and thus satisfies fp(u, v) ≤ cf (u, v) trivially. Let uv be an
arbitrary arc on p. Then

fp(u, v) = cf (p)

= min{cf (x, y)| xy on p}
≤ cf (u, v)

where the last inequality holds since cf (u, v) is the residual capacity of a
particular arc on p and cf (p) is the minimum residual capacity taken over all
such arcs.

Lastly, we have |fp| = cf (p) > 0 since no arc in Gf has capacity 0 by
definition and exactly one arc sv with non-zero flow leaves s and fp(s, v) =
cf (p).

4



CLRS, 24.2-8

Exercise

Suppose that we redefine the residual network to disallow edges into
s. Argue that the procedure Ford-Fulkerson still correctly computes a
maximum flow.

Suggested solution
The Ford-Fulkerson method computes the maximum flow by finding a se-
quence of augmenting (s, t)-paths in the residual network. No simple (s, t)-
path can use an arc into s (since then it would not be a simple), so no
implementation of the Ford-Fulkerson method is affected by the removal of
such arcs.

5



CLRS, 24.2-9

Exercise

Suppose that both f and f ′ are flows in a flow network. Does the aug-
mented flow f ↑ f ′ satisfy the flow conservation property? Does it satisfy
the capacity constraint?

Suggested solution
f ↑ f ′ does satisfy flow conservation, but the capacity constraints are not at
all respected. The definition of (f ↑ f ′)(u, v) (24.4) reduces to (f ↑ f ′) =
f(u, v)+ f ′(u, v) for all arcs uv ∈ E(G) since we assume no antiparallel arcs.
Thus, for any v ∈ V (G)∑

uv∈E(G)

(f ↑ f ′)(u, v) =
∑

uv∈E(G)

f(u, v) + f ′(u, v)

=
∑

uv∈E(G)

f(u, v) +
∑

uv∈E(G)

f ′(u, v)

=
∑

vu∈E(G)

f(v, u) +
∑

vu∈E(G)

f ′(v, u)

=
∑

vu∈E(G)

f(v, u) + f ′(v, u)

=
∑

vu∈E(G)

(f ↑ f ′)(v, u).

We can construct an example with only one arc st showing that the
capacity constraints are not respected (we did this in class).

6



CLRS, 24.2-10

Exercise

Show how to find a maximum flow in a flow network by a sequence of
at most |E| augmenting paths. (Hint: Determine the paths after finding
the maximum flow.)

Suggested solution
Let f be a maximum flow in G. Take any simple path P from s to t in G
using only arcs with positive flow. If no such path exists, then |f | = 0 and
thus the empty sequence of augmenting paths results in a maximum flow.

Otherwise, let α be the minimum flow on any arc on P and let f ′ be the
flow obtained by subtracting α from the flow on each arc of P . Then f ′ is
a flow in G with |f ′| = |f | − α. Furthermore, at least one arc (the one with
flow α) has no flow in f ′ and thus will never be used again.

Repeating this process at most |E| we obtain the desired paths.

7



CLRS, 24.2-11

Exercise

The edge connectivity of an undirected graph is the minimum number
k of edges that must be removed to disconnect the graph. For example,
the edge connectivity of a tree is 1, and the edge connectivity of a cyclic
chain of vertices is 2. Show how to determine the edge connectivity of
an undirected graph G = (V,E) by running a maximum-flow algorithm
on at most |V | flow networks, each having O(V +E) vertices and O(E)
edges.

Suggested solution
Call a set of edges whose removal disconnects G a cut-set. Let k be the size
of a minimum cut-set in G.

Obtain G′ by replacing every edge in G by a pair of antiparallel arcs and
split one of the arcs into two as described on page 673. Set the capacity of
all arcs to 1 and pick an arbitrary vertex s ∈ V (G) as the source. For every
t ∈ V (G) \ {s}, compute the value of a maximum flow fst in G′ from s to t.
Let fmin be the smallest value of |fst| obtained for all t ∈ V (G). We show
that fmin ≤ k and k ≤ fmin, from which we conclude fmin = k.

The minimum cut-set separates G into two at least two1 components S
and T . Without loss of generality assume that s ∈ V (S) and pick an arbitrary
t ∈ V (T ). There are exactly k arcs from S to T in G′, so fmin ≤ |fst| ≤ k
since all arcs have capacity 1.

Conversely, by the max-flow min-cut theorem, for any max-flow fst there
is an (s, t)-cut (S, T ) with capacity |fst|. Since the capacity of all arcs is
1, there are exactly |fst| arcs from S to T in G′. The removal of the k
corresponding edges in G disconnects G and thus k ≤ |fst| for any t ∈ V (G).
In particular, k ≤ fmin.

Since fmin ≤ k and k ≤ fmin, we conclude fmin = k.

1In fact, exactly 2. Assume more and obtain a contradiction to the minimality of the
cut-set.

8



CLRS, 24.2-12

Exercise

You are given a flow network G, where G contains edges entering the
source s. Let f be a flow in G with |f | ≥ 0 in which one of the edges
(v, s) entering the source has f(v, s) = 1. Prove that there must exist
another flow f ′ with f ′(v, s) = 0 such that |f | = |f ′|. Give an O(E)-time
algorithm to compute f ′, given f and assuming that all edge capacities
are integers.

Suggested solution
We assume that f is an integer flow.

Find a simple ’path’ p from s back to s in the residual network starting
with the edge sv and augment the flow along this path by 1 ≤ cf (p) (which
holds since f is an integer flow). s loses 1 unit of flow out and one unit of
flow in, so the flow value remains the same.

9



CLRS, 24.2-13

Exercise

Suppose that you wish to find, among all minimum cuts in a flow network
G with integer capacities, one that contains the smallest number of edges.
Show how to modify the capacities of G to create a new flow network
G′ in which any minimum cut in G′ is a minimum cut with the smallest
number of edges in G.

Suggested solution
We obtain G′ by adding a sufficiently small quantity ϵ > 0 to the capacity of
each arc (we will see how small). Let C be the capacity of a minimum cut
and let m be the number of edges in a minimum cut with the fewest number
of edges. If a minimum cut (S, T ) contains M > m edges, then the capacity
of (S, T ) in G′ is C +Mϵ > C +mϵ and thus (S, T ) is not a minimum cut in
G′. Note that this holds for any ϵ > 0.

If we pick ϵ sufficiently small, no cut that was previously not a minimum
cut will become a minimum cut. Indeed, since all capacities are integers, a
minimum cut in G has capacity at least 1 less than any non-minimum cut.
Thus, if we pick ϵ such that the capacity of a minimum cut in G increases
by less than 1, we obtain the desired property.

We show that ϵ < 1
|E| is sufficiently small (in practice, we could pick

ϵ = 1
|E|+1

). Let (S, T ) be a minimum cut in G with capacity C and m edges.

Let C ′ be the capacity of (S, T ) in G′. Then

C ′ = C +mϵ ≤ |E|ϵ < C + 1

since no cut contains more than |E| edges.

10


