
DM582 Solutions

Mads Anker Nielsen
madsn20@student.sdu.dk

March 18, 2024

This document contains written solution to exercise problems from the
course DM582 (spring 2024). The solutions given here might differ from the
solutions discussed in class. In class, we place more emphasis on the intuition
leading to the correct answer. Please do not consider reading these solutions
an alternative to attending the exercise classes.

References to CLRS refer to the book Introduction to Algorithms, 4th
edition by Cormen, Leiserson, Rivest, and Stein.

References to KT refer to the book Algorithm Design, 1st edition by J.
Kleinberg and E. Tardos.

This document will inevitably contain mistakes. If you find some, please
report them to me (Mads) so that I can correct them.

1



Sheet 5

CLRS, 7.4-5

Exercise

Coarsening the recursion, as we did in Problem 2-1 for merge sort, is
a common way to improve the running time of quicksort in practice.
We modify the base case of the recursion so that if the array has fewer
than k elements, the subarray is sorted by insertion sort, rather than
by continued recursive calls to quicksort. Argue that the randomized
version of this sorting algorithm runs in O(nk + n log(n/k)) expected
time. How should you pick k, both in theory and in practice?

Suggested solution
Loosely, if quicksort stops when reaching subarrays of size k, then the ex-
pected depth of the recursion tree is log n/k, and thus we get and expected
running time of O(n log n/k). Insertion sort is run on the n/k unsorted
subarrays of size k. Since insertion sort runs in time O(k2) on an array of
size k, the total contribution to the running time from the calls to inser-
tion sort is O(n/k · k2) = O(nk). In conclusion, the total running time in
O(nk + n log n/k).

The best choice of k depends on the value of the constants and potential
lower-order terms hidden by the asymptotic notation. In theory, if the actual
running time of the algorithm is f(n, k) where f(n, k) ∈ O(nk+n log(n/k)),
then we should pick k such that f(n, k) is minimized (e.g. by solving
d
dk
f(n, k) = 0)
In practice, however, k should be determined experimentally as the opti-

mal value depends on many unknown factors (implementation details, pro-
gramming language, processor/memory architecture).

2



CLRS, 7-1 (a-b)

Exercise

The version of PARTITION given in this chapter is not the original
partitioning algorithm. Here is the original partitioning algorithm, which
is due to C. A. R. Hoare.

a. Demonstrate the operation of HOARE-PARTITION on the ar-
ray A = ⟨13, 19, 9, 5, 12, 8, 7, 4, 11, 2, 6, 21⟩, showing the values of
the array and the indices i and j after each iteration of the while
loop.

b. Describe how the PARTITION procedure in Section 7.1 differs
from HOARE-PARTITION when all elements in A[p : r] are
equal. Describe a practical advantage of HOARE-PARTITION
over PARTITION for use in quicksort.

Suggested solution

a. See figure 1.

b. The PARTITION procedure in Section 7.1 results in an unbalanced
partition with all elements on the low side when the elements in A[p :
r] are equal. This invokes the worst-case running time of quicksort
of Θ(n2) where n is the length of the subararay. The HOARE-
PARTITION procedure, on the other hand, results in a balanced
partition in this case.

3



Figure 1

4



CLRS, Problem 7-2

Exercise

The analysis of the expected running time of randomized quicksort in
Section 7.4.2 assumes that all element values are distinct. This problem
examines what happens when they are not.

a. Suppose that all element values are equal. What is randomized
quicksort’s running time in this case?

b. The PARTITION procedure returns an index q such that each ele-
ment of A[p : q − 1] is less than or equal to A[q] and each element
of A[q + 1 : r] is greater than A[q]. Modify the PARTITION proce-
dure to produce a procedure PARTITION’ (A, p, r), which permutes
the elements of A[p : r] and returns two indices q and t, where
p ≤ q ≤ t ≤ r, such that

• all elements of A[q : t] are equal,

• each element of A[p : q − 1] is less than A[q], and

• each element of A[t+ 1 : r] is greater than A[q].

Like PARTITION, your PARTITION’ procedure should take O(r− p)
time.

c. Modify the RANDOMIZED-PARTITION procedure to call PARTITION’,
and name the new procedure RANDOMIZED-PARTITION’. Then mod-
ify the QUICKSORT procedure to produce a procedure QUICKSORT’(A, p, r)
that calls RANDOMIZED-PARTITION’ and recurses only on partitions
where elements are not known to be equal to each other.

d. Using QUICKSORT’, adjust the analysis in Section 7.4.2 to avoid the
assumption that all elements are distinct.

Suggested solution

a. The randomized swapping operation the distinguishes randomized quick-
sort from the deterministic version does not change the array. Thus,
the algorithm reduces to the deterministic version, which incurs the
worst-case running time of Θ(n2) when all elements are equal.

b. There are many ways to accomplish this. Below is one suggestion.

5



1 X = A[r]

2 q = t = p− 1

3 for j = p to r − 1

4 if A[j] ≤ x

5 t = t+ 1

6 swap A[t] and A[j]

7 if A[j] < x

8 q = q + 1

9 swap A[q] and A[t]

10 swap A[t+ 1] and A[r]

11 return (q + 1, t+ 1)

c. See figure 2.

Figure 2

d. In the proof of lemma 7.2, we use that if the pivot x chosen in the set
Zi,j is not zi nor zj, then zj < x < zi and thus zj and zi end up in
different parts of the partition and are thus never compared. For the
modified algorithm QUICKSORT’, this assertion is still true even if we
only assume zj ≤ x ≤ zi; if either inequality holds with equality, say
zj = x, then we do not recurse on a subarray containing zj, and thus
zj is never compared to zi (similarly if zi = x or both).

6



Thus, Lemma 7.2 still holds and the rest of the analysis is identical
except we replace z1 < z2 < · · · < zn with z1 ≤ z2 ≤ · · · ≤ zn in the
proofs of Lemma 7.3 and Theorem 7.4.1

1We are technically comparing the pivot with each element in the subarray twice in the
implementation of PARTITION’ given here, but this makes no difference to the asymptotic
runtime.

7



CLRS, Problem 7-4

Exercise

Professors Howard, Fine, and Howard have proposed a deceptively simple
sorting algorithm, named stooge-sort in their honor, appearing on the
following page.

a. Argue that the call STOOGE-SORT(A, 1, n) correctly sorts the ar-
ray A[1 : n].

b. Give a recurrence for the worst-case running time of STOOGE-SORT
and a tight asymptotic (Θ-notation) bound on the worst-case run-
ning time.

c. Compare the worst-case running time of STOOGE-SORT with that of
insertion sort, merge sort, heapsort, and quicksort. Do the profes-
sors deserve tenure?

Suggested solution

a. We argue (semi-formally) by induction on the length of the subarray
A[p : r] which we denote n. For the sake of simplicity, assume that the
elements of the array are distinct.

For n ≤ 2 the algorithm correctly sorts the array in the first if statement
and terminates.

Suppose n ≥ 3 and let k = ⌊(r − p + 1)/3⌋. All recursive calls are
on subarrays with fewer elements, and thus the subarrays are correctly
sorted by the induction hypothesis. Suppose some element x is among
the largest k elements of the subarray A[p : r]. Then x is also among
the largest k elements of the subarray A[p : r − k]. Thus, after sorting
A[p, r − k], x is in the subarray A[p + k : r]. Hence, when A[p + k : r]
is sorted, x is among the last k element of A[p : r]. Since this holds
for any x among the largest k elements of A[p : r], we conclude that

8



the last k elements of A[p : r] are the k largest elements of A[p : r] in
sorted order. Thus, sorting A[p, r− k] after the first two recursive calls
completely sorts the array.

b. The algorithm perform a constant amount of work and 3 recursive calls
on subarrays of size 2/3n (ignoring the rounding). Thus,

T (n) = 3T ((2/3)n) + c

describes the running time of the algorithm where c is a constant.
This can be solved using the master theorem. Case 1 applies and thus
T (n) ∈ Θ(nlog3/2 3). Note that log3/2 3 ≈ 2.7.

c. All of these algorithms have worst-case running time at most O(n2).
The professors might deserve tenure, but probably not because of this
algorithm.

9



CLRS, 9.2-1

Exercise

Show that RANDOMIZED-SELECT never makes a recursive call to a 0-length
array.

Suggested solution
Suppose we make a recursive call to a 0-length array. We show that the
condition 1 ≤ i ≤ r − p + 1 is violated. If the call to a 0-length subarray
happens on line 8, then we must have q = p and i < k. But k = q−p+1 = 1
and thus i < 1; a contradiction. Thus, the recursive call to a 0-length array
must occur on line 9. Then we must have q = r and i > k. But k = r− p+1
and thus i > r − p+ 1; a contradiction.

10



CLRS, Problem 9-1

Exercise

You are given a set of n numbers, and you wish to find the i largest in
sorted order using a comparison-based algorithm. Describe the algorithm
that implements each of the following methods with the best asymptotic
worst-case running time, and analyze the running times of the algorithms
in terms of n and i.

1. Sort the numbers, and list the i largest.

2. Build a max-priority queue from the numbers, and call EXTRACT-MAX
i times.

3. Use an order-statistic algorithm to find the i-th largest number,
partition around that number, and sort the i largest numbers.

Suggested solution
Using Merge-Sort guarantees a running time of Θ(n log n) for this approach.

The Build-Max-Heap procedure runs in time Θ(n) and the Max-Heap-Extract
in time Θ(log n) time. We need to call Build-Max-Heap once and Max-Heap-Extract
k times, so the total running time of this approach is Θ(n+ i log n).

Using Randomized-Select for finding the i-th largest element and Merge-Sort
for sorting, the running time of this approach is Θ(n+i log i) in expectation.

11


