
DM582 Solutions

Mads Anker Nielsen
madsn20@student.sdu.dk

May 2, 2024

This document contains written solution to exercise problems from the
course DM582 (spring 2024). The solutions given here might differ from the
solutions discussed in class. In class, we place more emphasis on the intuition
leading to the correct answer. Please do not consider reading these solutions
an alternative to attending the exercise classes.

References to CLRS refer to the book Introduction to Algorithms, 4th
edition by Cormen, Leiserson, Rivest, and Stein.

References to KT refer to the book Algorithm Design, 1st edition by J.
Kleinberg and E. Tardos.

References to Rosen refer to the book Discrete Mathematics and its Ap-
plications, 8th edition by K. Rosen.

This document will inevitably contain mistakes. If you find some, please
report them to me (Mads) so that I can correct them.

1

Sheet 9

CLRS Exercise 32.3-2

Exercise

Draw a state-transition diagram for the string-matching automaton for
the pattern ababbabbababbababbabb over the alphabet Σ = {a, b}.

Suggested solution
See Figure 1.

Figure 1

2

CLRS Exercise 32.4-1

Exercise

Compute the prefix function for the pattern ababbabbabbababbabb.

Suggested solution
π[i] is the largest k < i such that P [: k] is a suffix of P [: i]. It is simple to
compute by brute force or by using the algorithm COMPUTE-PREFIX-FUNCTION

from CLRS. We get the following values:

• π[1] = 0, since the only k < i is 0.

• π[2] = 0, since P [: 1] = a is not a suffix of P [: 2] = ab.

• π[3] = 1, since P [: 1] = a is a suffix of P [: 3] = aba.

• π[4] = 2, since P [: 2] = ab is a suffix of P [: 4] = abab.

• π[5] = 0 (. . .)

• π[6] = 1

• π[7] = 2

• π[8] = 0

• π[9] = 1

• π[10] = 2

• π[11] = 0

• π[12] = 1

• π[13] = 2

• π[14] = 3

• π[15] = 4

• π[16] = 5

• π[17] = 6

• π[18] = 7

• π[19] = 8

3

CLRS Exercise 32.4-3

Exercise

Explain how to determine the occurrences of pattern P the text T by
examining the π function for the string PT (the string of length m + n
that is the concatenation of P and T).

Suggested solution
We start by noticing that if π[s +m] = m, then PT [: m] = P is a (proper)
suffix of PT [: s+m] by the definition of π. Thus, P occurs in PT with shift
s if π[s + m] = m. However, this condition is not necessary. Consider e.g.
the following example P = ab and T = abab. Then π[6] = 4 and yet P occurs
with shift 6− 2 in PT .

Instead, we use the function π∗ from Lemma 32.5 of page 980. We can
compute π∗ only by examining π. Lemma 32.5 states that π∗[q] = {k|k <
q and P [: k] suffix of P [: q]}. Thus, PT [: m] = P is a suffix of PT [: q] (and
hence occurs with shift q − m) for some q > m iff m ∈ π∗[q]. We should
discard shifts less than m to avoid conting occurences that overlap with P .

4

CLRS Exercise 32.4-5

Exercise

Use a potential function to show that the running time of KMP-MATCHER
is θ(n). (Algorithm shown below).

Suggested solution
We show that each iteration of the for loop takes around constant time, from
which is follows that the total running time is θ(n).

Let Φi = q to be the potential at the beginning of the i-th iteration of
the for loop. All operations done outside the while loop on line 4-5 takes
constant time, so we may suppose that one unit of potential is enough to pay
for all these operations. Suppose the while loop on line 4 is executed k times
in the ith iteration. The amortized cost of the ith iteration is then

ĉi = 1 + k + Φi − Φi−1.

We observe that, by definition, π[q] < q for all q. Thus, the potential de-
creases by at least 1 in each iteration of the while loop. The potential
only increases by 1 from the operation q = q + 1 on line 6, so we have
Φi − Φi−1 ≤ −k + 1 implying

ĉi ≤ 2 ∈ O(1)

which is what we wanted to show.

5

CLRS Exercise 32.4-6

Exercise

Show how to improve KMP-MATCHER by replacing the occurrence of in
line 5 by (but not line 10) by π′, where π is defined recursively for q =
1, 2, . . . ,m− 1 by the equation

π′[q] =

0 if π[q] = 0,

π′[π[q]] if π[q] ̸= 0 and P [π[q] + 1] = P [q + 1],

π[q] if π[q] ̸= 0 and P [π[q] + 1] ̸= P [q + 1].

Explain why the modified algorithm is correct, and explain in what sense
this change constitutes an improvement.

Suggested solution
Suppose line 5 is being executed in the unmodified algorithm. If π[q] ̸= 0 and
P [π[q] + 1] = P [q+ 1], then the loop will execute again since P [q+ 1] ̸= T [i]
and thus P [π[q] + 1] ̸= T [i]. Thus, assigning q = π[π[q]] would not change
the behavior of the algorithm in this case. The idea behind π′ is to take
advantage of this to save some iterations of the while loop.

Formally, we argue that assigning q = π′[q] eventually results the variable
q eventually (after the while loop) taking the same value as if we had assigned
q = π[q].

We argue by induction on q. For q = 1 we have π′[1] = 0 = π[1] and the
loop terminates immediately. Let q > 1. In cases 1 and 3 of the definition of
π′, we have π′[q] = π[q] < q, so the claim holds by the induction hypothesis.
In case 2, we have argued that assigning q = π[π[q]] does not change the value
that q eventually takes. Since, π[q] < q, assigning q = π′[π[q]] eventually
results in q taking the same value as if we had assigned q = π[π[q]] by the
induction hypothesis.

6

CLRS Exercise 32.4-7

Exercise

Give a linear-time algorithm to determine whether a text T is a cyclic
rotation of another string T ′. For example, braze and zebra are cyclic
rotations of each other.

Suggested solution
First check if T and T ′ have the same length and return false immediately if
not. The |T ′|-length substring of T ′T ′ are exactly the cyclic rotations of T ′,
so T is a cyclic rotation of T ′ if and only if T is a substring of T ′T ′. We can
construct T ′T ′ and determine whether T occurs as a substring in linear time
by using KMP.

7

CLRS Exercise 32.4-8

Exercise

Give an O(m|Σ|)-time algorithm for computing the transition function δ
for the string-matching automaton corresponding to a given pattern P .
(Hint: Prove that δ(q, a) = δ(π[q], a) if q = m or P [q + 1] ̸= a.)

Suggested solution
We start by recalling that, by the definition of δ, δ(q, a) = q+1 if P [q+1] = a
and q < m. Otherwise, either q = m or P [q+1] ̸= a. Suppose the claim from
the hint holds. Then we can compute δ(q, a) by setting δ(q, a) = δ(π[q], a)
if q = m or P [q + 1] ̸= a and δ(q, a) = q + 1 otherwise. Since π[q] < q,
if we compute δ(q, a) in order of increasing q, then for each a ∈ Σ and
q ∈ {0, 1, . . . ,m}, we can compute δ(q, a) in constant time: Check if P [q +
1] = a and q < m and set δ(q, a) = q + 1 and otherwise assigning to δ(q, a)
the previously computed δ(π[q], a) (this is standard dynamic programming).
Thus, computing δ via this approach takes O(m|Σ|) time.

Note: the following proof is quite notation heavy and does not provide
much intuition as to why this claim holds. Drawing the state transition di-
agram and arguing on basis of that, the argument is intuitively more clear
(but not so nice to write down formally).

We have left to prove the claim from the hint. Recall that δ(q, a) = σ(P [:
q]a) where σ(X) is the largest k such that P [: k] is a suffix of X.

Since q = m or P [q + 1] ̸= a, we have σ(P [: q]a) ≤ q. Let k = σ(P [:
q]a) ≤ q. We start by showing σ(P [: π[q]]a) ≥ k. Indeed, P [: k − 1] is prefix
which is a proper suffix of P [: q] and P [: π[q]] is the longest prefix which is a
proper suffix of P [: q]. Thus, P [k − 1]a = P [: k] is a suffix of P [: π[q]]a and
hence k = σ(P [: q]a) ≤ σ(P [: π[q]]a).

We also have σ(P [: π[: q]]a) ≤ σ(P [: q]a) since P [: π[q]]a is a suffix of
P [: q]a.

In conclusion, σ(P [: π[: q]]a) = σ(P [: q]a) as desired.

8

