
Meldable Priority Queues

Kim Skak Larsen

Department of Mathematics and Computer Science
University of Southern Denmark

kslarsen@imada.sdu.dk

Advanced Algorithms (DM582)
April 23, 2025

DM582, Spring, 2025 Kim Skak Larsen 1



About These Slides

Disclaimer

These slides contain much more text than I usually put on slides.

The reason is that no good text exists for this material at this level. So, the

slides should replace a textbook.

Thus, the slides will be less suited for lecturing.

DM582, Spring, 2025 Kim Skak Larsen 2



Priority Queues

A priority queue is a data type for a collection of elements, each of which has

an associated priority.

The minimal set of operations provided for a priority queue are the following:

q = PriorityQueue(): Initializes an empty priority queue.

q.insert(e, p): Inserts the element e with priority p into q.

q.findMin(): Returns the element of highest priority (traditionally indicated

by smallest value) in q.

q.deleteMin(): Deletes and returns the element of highest priority from q.

A priority queue may have additional operations such as decreaseKey, meld,

and others.

DM582, Spring, 2025 Kim Skak Larsen 3



Priority Queues

The most well-known implementation of the priority queue data type is the

binary heap data structure.

A binary heap provides findMin in O(1) time and insert and deleteMin in

O(log n), where n is the number of elements in the priority queue when the

operation is carried out.

We will be interested in the operation meld.

meld(q, p): Returns a new priority queue containing all the elements from q

and p (destructive).

The standard binary heap implementation cannot provide an efficient

implementation of this operation.

DM582, Spring, 2025 Kim Skak Larsen 4



Leftist Heaps [Crane, Stanford, 1972]

A leftist heap is implemented as an annotated binary tree.

Each node contains an element with a priority (we just show the priority of

the element) and a rank.

The tree is heap-ordered, i.e., the priority of a node is at most the priority of

its children.

The rank is defined as the distance to nil 1 in the following sense:

Think of a nil reference as a reference to a special node with rank zero. Then

a node containing a nil reference has rank one. Other nodes have rank one

plus the minimum of the ranks of its children.

The tree must be leftist, which we define to mean that for any node u,

u.left().rank() ≥ u.right().rank()

1 Or None, null, or some other name for an initialized missing reference.
DM582, Spring, 2025 Kim Skak Larsen 5



Example Leftist Heap

16 1

14 1 12 1

4 2

11 1 20 1

10 2

6 1

3 2

DM582, Spring, 2025 Kim Skak Larsen 6



Melding Two Leftist Heaps

We carry out a meld as follows:

1 Merge the right-most paths of the two argument heaps according to the

priorities via their right child references.

2 Adjust the ranks bottom-up on the right-most path in the result.

3 Switch the children of nodes on the right-most path if the leftist

requirement is violated.

The result is clearly a leftist heap.

It takes time proportional to the sum of the lengths of the arguments

right-most paths.

DM582, Spring, 2025 Kim Skak Larsen 7



Leftist Heaps

8 1

30 1

15 1

5 2

meld −→−→

16 1

14 1 12 1

4 2

11 1 20 1

10 2

6 1

3 2

16 1

14 1 12 1

4 2

11 1 20 1

10 2 88 1

66 2

11 1 20 1

10 2 8 1

6 2

30 1

15 1

30 1

15 1

55 25 2

33 33 3

DM582, Spring, 2025 Kim Skak Larsen 8



Leftist Heaps

8 1

30 1

15 1

5 2

meld −→−→

16 1

14 1 12 1

4 2

11 1 20 1

10 2

6 1

3 2

16 1

14 1 12 1

4 2

11 1 20 1

10 2 88 1

66 2

11 1 20 1

10 2 8 1

6 2

30 1

15 1

30 1

15 1

55 25 2

33 33 3

DM582, Spring, 2025 Kim Skak Larsen 9



Leftist Heaps

8 1

30 1

15 1

5 2

meld −→−→

16 1

14 1 12 1

4 2

11 1 20 1

10 2

6 1

3 2

16 1

14 1 12 1

4 2

11 1 20 1

10 2 88 1

66 2

11 1 20 1

10 2 8 1

6 2

30 1

15 1

30 1

15 1

55 25 2

3

3 33 3

DM582, Spring, 2025 Kim Skak Larsen 10



Leftist Heaps

8 1

30 1

15 1

5 2

meld −→−→

16 1

14 1 12 1

4 2

11 1 20 1

10 2

6 1

3 2

16 1

14 1 12 1

4 2

11 1 20 1

10 2 88 1

66 2

11 1 20 1

10 2 8 1

6 2

30 1

15 1

30 1

15 1

5

5 25 2

3

3 33 3

DM582, Spring, 2025 Kim Skak Larsen 11



Leftist Heaps

8 1

30 1

15 1

5 2

meld −→−→

16 1

14 1 12 1

4 2

11 1 20 1

10 2

6 1

3 2

16 1

14 1 12 1

4 2

11 1 20 1

10 2

88 1

6

6 2

11 1 20 1

10 2 8 1

6 2

30 1

15 1

30 1

15 1

5

5 25 2

3

3 33 3

DM582, Spring, 2025 Kim Skak Larsen 12



Leftist Heaps

8 1

30 1

15 1

5 2

meld −→−→

16 1

14 1 12 1

4 2

11 1 20 1

10 2

6 1

3 2

16 1

14 1 12 1

4 2

11 1 20 1

10 2 8

8 1

6

6 2

11 1 20 1

10 2 8 1

6 2

30 1

15 1

30 1

15 1

5

5 25 2

3

3 33 3

DM582, Spring, 2025 Kim Skak Larsen 13



Leftist Heaps

8 1

30 1

15 1

5 2

meld −→−→

16 1

14 1 12 1

4 2

11 1 20 1

10 2

6 1

3 2

16 1

14 1 12 1

4 2

11 1 20 1

10 2 8

8 1

6

6 2

11 1 20 1

10 2 8 1

6 2

30 1

15 1

30 1

15 1

5

5 25 2

3

3 33 3

DM582, Spring, 2025 Kim Skak Larsen 14



Leftist Heaps

8 1

30 1

15 1

5 2

meld −→−→

16 1

14 1 12 1

4 2

11 1 20 1

10 2

6 1

3 2

16 1

14 1 12 1

4 2

11 1 20 1

10 2

8

8 1

6

6 2

11 1 20 1

10 2 8 1

6 2

30 1

15 1

30 1

15 1

5

5 25 2

3

3 33 3

DM582, Spring, 2025 Kim Skak Larsen 15



Leftist Heaps

8 1

30 1

15 1

5 2

meld −→−→

16 1

14 1 12 1

4 2

11 1 20 1

10 2

6 1

3 2

16 1

14 1 12 1

4 2

11 1 20 1

10 2

8

8 1

6

6 2

11 1 20 1

10 2 8 1

6 2

30 1

15 1

30 1

15 1

5

5 25 2

3

3 33 3

DM582, Spring, 2025 Kim Skak Larsen 16



Leftist Heaps

8 1

30 1

15 1

5 2

meld −→−→

16 1

14 1 12 1

4 2

11 1 20 1

10 2

6 1

3 2

16 1

14 1 12 1

4 2

11 1 20 1

10 2

8

8 1

6

6 2

11 1 20 1

10 2 8 1

6 2

30 1

15 1

30 1

15 1

5

5 2

5 2

3

3 33 3

DM582, Spring, 2025 Kim Skak Larsen 17



Leftist Heaps

8 1

30 1

15 1

5 2

meld −→−→

16 1

14 1 12 1

4 2

11 1 20 1

10 2

6 1

3 2

16 1

14 1 12 1

4 2

11 1 20 1

10 2

8

8 1

6

6 2

11 1 20 1

10 2 8 1

6 2

30 1

15 1

30 1

15 1

5

5 2

5 2

3

3 3

3 3

DM582, Spring, 2025 Kim Skak Larsen 18



Leftist Heaps

8 1

30 1

15 1

5 2

meld −→−→

16 1

14 1 12 1

4 2

11 1 20 1

10 2

6 1

3 2

16 1

14 1 12 1

4 2

11 1 20 1

10 2

8

8 1

6

6 2

11 1 20 1

10 2 8 1

6 2

30 1

15 1

30 1

15 1

5

5 2

5 2

3

3 3

3 3

DM582, Spring, 2025 Kim Skak Larsen 19



Leftist Heaps

8 1

30 1

15 1

5 2

meld −→−→

16 1

14 1 12 1

4 2

11 1 20 1

10 2

6 1

3 2

16 1

14 1 12 1

4 2

11 1 20 1

10 2 88 1

66 2

11 1 20 1

10 2 8 1

6 2

30 1

15 1

30 1

15 1

55 2

5 2

33 3

3 3

DM582, Spring, 2025 Kim Skak Larsen 20



Leftist Heap Complexity

Lemma
In a leftist tree, the subtree of a node with rank r contains at least 2r − 1
nodes.

Proof By structural induction. For the base case, a node with no children

has rank 1 and its subtree contains 21 − 1 = 1 nodes. For the induction step, a

node cannot have rank r unless both of its children have rank at least r − 1.

By induction, its subtree has at least 2(2r−1 − 1) + 1 = 2r − 1 nodes. □

Corollary

The maximal rank of the root of a leftist heap with n elements is log(n+ 1).

Proof Let r be the rank of the root. By the above lemma, n ≥ 2r − 1, so

r ≤ log(n+ 1). □

DM582, Spring, 2025 Kim Skak Larsen 21



Leftist Heap Complexity

Theorem

A meld of two leftist heaps with n1 and n2 elements takes time O(log n),
where n = n1 + n2.

Proof For any node of rank r with left and right children ranks of rl and rr,

since rl ≥ rr (the leftist property), r = rr + 1. Thus, there are exactly r nodes

on the right-most path of a root with rank r.

The time to meld the two heaps is proportional to the sum of the lengths of

the two right-most paths, which amounts to at most

log(n1 + 1) + log(n2 + 1) ≤ 2 log(max {n1, n2}+ 1) ≤ 2 log n.

□

DM582, Spring, 2025 Kim Skak Larsen 22



Leftist Heap Operations

Operations other than meld are either trivial or can be reduced to meld, so we

get the following results are corollaries.

q = PriorityQueue(): Clearly O(1).

q.insert(e, p): Make singleton heap and meld with q in O(log n).

q.findMin(): Clearly O(1).

q.deleteMin(): Remove the root, meld its two children in O(log n).

q = buildHeap(elements): Notice that the shape of a classic heap makes it a

leftist heap that we can annotate with ranks in linear time and get this

operation in O(n).

DM582, Spring, 2025 Kim Skak Larsen 23



Skew Heaps [Sleator & Tarjan]

We try to do as well or better with less information!

A skew heap is mostly the same as a leftist heap, but we do not keep any rank

information. Instead, after merging the right-most paths according to

priorities, we switch the subtrees of every node on that path!

So, the two right-most paths become one left-most path.

DM582, Spring, 2025 Kim Skak Larsen 24



Skew Heaps Example

←←

meld −→−→

→→

DM582, Spring, 2025 Kim Skak Larsen 25



Skew Heaps Example

←←

meld −→−→

→→

DM582, Spring, 2025 Kim Skak Larsen 26



Skew Heaps Analysis

A node is heavy ( ) if its right subtree contains more nodes than its left

subtree. Otherwise, it is called light ( ).

During the merge and the switches, nodes on the right-most paths before the

meld can change status from heavy to light or light to heavy.

DM582, Spring, 2025 Kim Skak Larsen 27



Skew Heaps

←←

meld −→−→

→→

During a merge, a heavy node may be come even heavier!

So, when we switch the subtrees, it will definitely become light.

We do not know if a light node changes status or not.

heavy → light

light → ?

DM582, Spring, 2025 Kim Skak Larsen 28



Skew Heaps

←←

meld −→−→

→→

During a merge, a heavy node may be come even heavier!

So, when we switch the subtrees, it will definitely become light.

We do not know if a light node changes status or not.

heavy → light

light → ?

DM582, Spring, 2025 Kim Skak Larsen 29



Skew Heaps

←←

meld −→−→

→→

During a merge, a heavy node may be come even heavier!

So, when we switch the subtrees, it will definitely become light.

We do not know if a light node changes status or not.

heavy → light

light → ?

DM582, Spring, 2025 Kim Skak Larsen 30



Skew Heaps

←←

meld −→−→

→→

During a merge, a heavy node may be come even heavier!

So, when we switch the subtrees, it will definitely become light.

We do not know if a light node changes status or not.

heavy → light

light → ?

DM582, Spring, 2025 Kim Skak Larsen 31



Skew Heaps

Lemma
There are at most log n light nodes on the right-most path of a skew heap.

Proof A heavy node would have |B| > |A|.

But it is light, so |B| ≤ |A|.

Thus, traversing the right-most path from root to leaf,
considering the number of nodes in A and B, we always
move towards the subtree with at most half of the nodes.

This can only happen log n times.

k

A B
←←
≤ k

2

□

DM582, Spring, 2025 Kim Skak Larsen 32



Skew Heaps

Theorem

For skew heaps, meld is OA(log n) (amortized O(log n)).

Proof Let li and hi denote the number of light and heavy nodes,

respectively, on the right-most path of argument i, i ∈ {1, 2}.

As for leftist heaps, the cost of meld is (l1 + h1) + (l2 + h2).

Define the potential function Φ(T ) to be the number of heavy nodes in T .

This is initially zero and always non-negative, so results are valid.

In the worst case, all the light nodes become heavy so we need to pay into the

potential for them.

Operation Cost ∆Φ Amortized Cost

meld (l1 + h1) + (l2 + h2) −h1 − h2 + l1 + l2 2(l1 + l2)

The result follow by the lemma. □
DM582, Spring, 2025 Kim Skak Larsen 33



Skew Heaps

As for leftist heaps, all the other operations follow.

q = PriorityQueue(): Clearly O(1).

q.insert(e, p): Make singleton heap and meld with q in OA(log n).

q.findMin(): Clearly O(1).

q.deleteMin(): Remove the root, meld its two children in OA(log n).

q = buildHeap(elements): Notice that the shape of a classic heap makes all

nodes light, so we can perform the operation in O(n) and the potential is zero,

so the amortized results for the above operations hold.

DM582, Spring, 2025 Kim Skak Larsen 34



References I

C. A. Crane.

Linear Lists and Priority Queues as Balanced Binary Trees.

Tech. report STAN-CS-72-259, Computer Science Department, Stanford University,
1972.

Daniel Dominic Sleator, Robert Endre Tarjan.

Self-Adjusting Binary Trees.

In Proc. 15th Annual ACM Symp. on the Theory of Computing, pages 235–245, 1983.

DM582, Spring, 2025 Kim Skak Larsen 35


