DM5H82 Exercises - Sheet 10

Mads Anker Nielsen Tobias Samsge Sgrensen

April 8, 2025

This document contains exercises from the course DM582 (spring 2025).
Most exercises are from the book Introduction to Algorithms, 4th edition
by Cormen, Leiserson, Rivest, and Stein (CLRS), the book Algorithm De-
sign, 1st edition by J. Kleinberg and E. Tardos (KT), and the book Discrete
Mathematics and its Applications, Sth edition by K. Rosen.

The solutions given here might differ from the solutions discussed in class.
In class, we place more emphasis on the intuition leading to the correct
answer. Please do not consider reading these solutions an alternative to
attending the exercise classes.

References to CLRS refer to the book Introduction to Algorithms, 4th
edition by Cormen, Leiserson, Rivest, and Stein.

References to KT refer to the book Algorithm Design, 1st edition by J.
Kleinberg and E. Tardos.

References to Rosen refer to the book Discrete Mathematics and its Ap-
plications, 8th edition by K. Rosen.

This document will inevitably contain mistakes. If you find some, please
report them to your TA so that we can correct them.

Sheet 10

CLRS Exercise 32.3-2

Draw a state-transition diagram for the string-matching automaton for
the pattern ababbabbabbababbabb over the alphabet ¥ = {a,b}. (The
pattern is from Exercise 32.4-1).

Suggested solution
See Figure 1.

C QL

>3 \
o
% \ N,

Otﬁl"zq-’J i

o
bo !

mssng = 30 e ©

missing 2, go

Figure 1

CLRS Exercise 32.4-1

Compute the prefix 7 function for the pattern ababbabbabbababbabb. Com-
pare with what you got in Exercise 32.3-2.

Suggested solution

7[i] is the largest k < i such that P[: k] is a suffix of P[: ¢]. It is simple to
compute by brute force or by using the algorithm COMPUTE-PREFIX-FUNCTION
from CLRS. We get the following values:

7[1] = 0, since the only k < i is 0.

7[2] = 0, since P[: 1] = a is not a suffix of P[: 2] = ab.
7[3] = 1, since P[: 1] = a is a suffix of P[: 3] = aba.
7[4] = 2, since P[: 2] = ab is a suffix of P[: 4] = abab.

7[5 =0(...)
6] = 1
7] =2
78] = 0
0] = 1
7[10] = 2
[11] = 0
m[12] =1
7[13] = 2
[14] = 3
7[15] =
7[16] = 5
[17] = 6
718 =7
7[19] = 8

CLRS Exercise 32.4-3

Explain how to determine the occurrences of pattern P in the text T' by
examining the 7 function for the string PT (the string of length m +n
that is the concatenation of P and T).

Suggested solution

We start by noticing that if 7[s + m] = m, then PT[: m] = P is a (proper)
suffix of PT[: s +m] by the definition of w. Thus, P occurs in PT with shift
s if m[s +m] = m. However, this condition is not necessary. Consider e.g.
the following example P = ab and T" = abab. Then 7[6] = 4 and yet P occurs
with shift 6 — 2 in PT.

Instead, we use the function 7* from Lemma 32.5 of page 980. We can
compute 7* only by examining 7. Lemma 32.5 states that 7*[q] = {k|k <
q and P[: k| suffix of P[: ¢|}. Thus, PT[: m| = P is a suffix of PT[: ¢| (and
hence occurs with shift ¢ — m) for some ¢ > m iff m € 7*[q]. We should
discard shifts less than m to avoid counting occurences that overlap with P.

CLRS Exercise 32.4-5

Use a potential function to show that the running time of KMP-MATCHER
is ©(n). Think of the whole while-loop as an operation, update_q. Prove
that operation update_q is amortized constant time. (Algorithm shown
below).

KMP-MATCHER(T, P, n,m)
1 7 = COMPUTE-PREFIX-FUNCTION (P, m)

2 ¢g=0 // number of characters matched
3 fori = 1ton // scan the text from left to right
4 while g > 0and Plg + 1] # Ti]

5 q = 7lq] // next character does not match
6 if Plg + 1] ==T1[i]

7 q=q+1 // next character matches

8 ifg==m // is all of P matched?

9 print “Pattern occurs with shift” i —m

10 q = nlq] // look for the next match

COMPUTE-PREFIX-FUNCTION (P, m)

1 let 7[1:m] be a new array

2 #[1] =0

3 k=0

4 forqg =2tom

5 while k > 0and P[k + 1] # P[q]
6 k = nlk]

7 if Pk + 1] == P[q]

8 k=k+1

9 mlq] =k

10 return 7

Suggested solution
We show that each iteration of the for loop takes around constant time, from
which is follows that the total running time is ©(n).

Let ®; = g to be the potential at the beginning of the i-th iteration of
the for loop. All operations done outside the while loop on line 4-5 takes
constant time, so we may suppose that one unit of potential is enough to pay
for all these operations. Suppose the while loop on line 4 is executed £ times
in the ¢th iteration. The amortized cost of the ith iteration is then

We observe that, by definition, 7[q] < ¢ for all ¢. Thus, the potential de-
creases by at least 1 in each iteration of the while loop. The potential
only increases by 1 from the operation ¢ = ¢ + 1 on line 6, so we have
b, — P, | < —k+ 1 implying

which is what we wanted to show.

CLRS Exercise 32.4-6

Show how to improve KMP-MATCHER by replacing the occurrence of w
in line 5 by (but not line 10) by 7', where 7’ is defined recursively for
q=1,2,...,m — 1 by the equation

0 if w[q] = 0,
m'lq] = § 7'[rlg]] if wlg] # 0 and P[x[g] + 1] = Plg + 1],
wlg] if wlg] # 0 and Plr[g] + 1] # Plg +1].

Explain why the modified algorithm is correct, and explain in what sense
this change constitutes an improvement.

Suggested solution

Suppose line 5 is being executed in the unmodified algorithm. If 7[g] # 0 and
Pr[q] + 1] = P[q+ 1], then the loop will execute again since P[q + 1] # T[i]
and thus Pr[q] + 1] # Ti]. Thus, assigning g = 7[r[g]] would not change
the behavior of the algorithm in this case. The idea behind #’ is to take
advantage of this to save some iterations of the while loop.

Formally, we argue that assigning ¢ = 7’[¢q] eventually results in the
variable ¢ (after the while loop) taking the same value as if we had assigned
q = lq.

We argue by induction on ¢. For ¢ = 1 we have 7’[1] = 0 = 7[1] and the
loop terminates immediately. Let ¢ > 1. In cases 1 and 3 of the definition of
7', we have 7'[q] = 7[q] < ¢, so the claim holds by the induction hypothesis.
In case 2, we have argued that assigning ¢ = 7[n[¢]] does not change the value
that ¢ eventually takes. Since, m[q] < ¢, assigning ¢ = 7'[r[q]] eventually
results in ¢ taking the same value as if we had assigned ¢ = 7[r[q]] by the
induction hypothesis.

CLRS Exercise 32.4-7

Give a linear-time algorithm to determine whether a text T is a cyclic
rotation of another string 7”. For example, braze and zebra are cyclic
rotations of each other.

Suggested solution

First check if T' and 7" have the same length and return false immediately if
not. The |T"|-length substring of 7"T" are exactly the cyclic rotations of 77,
so T is a cyclic rotation of T" if and only if T is a substring of 7"T’. We can
construct 7"T" and determine whether T" occurs as a substring in linear time
by using KMP.

CLRS Exercise 32.4-8

Give an O(m|X|)-time algorithm for computing the transition function §
for the string-matching automaton corresponding to a given pattern P.
(Hint: Prove that 6(q,a) = d(w[q],a) if g = m or Plq+ 1] # a.)

Note: The hint follows from our discussions at the lecture, where we
proved that d(q, a) could be computed by following the chain defined by
the 7 function. And the hint just says that we end up the same place
if we take just one step along the chain and then continues recursively
from there. Thus, just assume that the hint is true and now solve the

exercise.
\ J

Suggested solution

We start by recalling that, by the definition of §, (¢, a) = ¢+1if Plg+1] = a
and ¢ < m. Otherwise, either ¢ = m or P[qg+ 1] # a. Suppose the claim from
the hint holds. Then we can compute (g, a) by setting d(q,a) = d(x[q], a)
if ¢ = m or Plg+ 1] # a and §(q,a) = g + 1 otherwise. Since 7[q] < g,
if we compute d(q,a) in order of increasing ¢, then for each a € ¥ and
q € {0,1,...,m}, we can compute 6(g,a) in constant time: Check if P[g +
1] = a and ¢ < m and set §(¢,a) = ¢ + 1 and otherwise assigning to (g, a)
the previously computed §(7|g], @) (this is standard dynamic programming).
Thus, computing § via this approach takes O(m|X|) time.

Note: the following proof is quite notation heavy and does not provide
much intuition as to why this claim holds. Drawing the state transition di-
agram and arguing on basis of that, the argument is intuitively more clear
(but not so nice to write down formally).

We have left to prove the claim from the hint. Recall that 6(q,a) = o(P[:
qla) where o(X) is the largest k such that P[: k| is a suffix of X.

Since ¢ = m or Plq + 1] # a, we have o(P]: ¢la) < q. Let k = o(P[:
qla) < q. We start by showing o(P[: 7[q]la) > k. Indeed, P[: k — 1] is prefix
which is a proper suffix of P[: g] and P[: 7[q|] is the longest prefix which is a
proper suffix of P[: ¢]. Thus, Plk — 1Ja = P[: k| is a suffix of P[: 7[g]]a and
hence k = o(P[: qla) < o(P[: [q]]a).

We also have o(P[: 7[: q]la) < o(P[: gla) since P[: 7[g]]a is a suffix of
Pl: qla.

In conclusion, o(P[: 7[: q]]la) = o(P[: qla) as desired.

