DM5H82 Exercises - Sheet 11

Mads Anker Nielsen Tobias Samsge Sgrensen

April 22, 2025

This document contains exercises from the course DM582 (spring 2025).
Most exercises are from the book Introduction to Algorithms, 4th edition
by Cormen, Leiserson, Rivest, and Stein (CLRS), the book Algorithm De-
sign, 1st edition by J. Kleinberg and E. Tardos (KT), and the book Discrete
Mathematics and its Applications, Sth edition by K. Rosen.

The solutions given here might differ from the solutions discussed in class.
In class, we place more emphasis on the intuition leading to the correct
answer. Please do not consider reading these solutions an alternative to
attending the exercise classes.

References to CLRS refer to the book Introduction to Algorithms, 4th
edition by Cormen, Leiserson, Rivest, and Stein.

References to KT refer to the book Algorithm Design, 1st edition by J.
Kleinberg and E. Tardos.

References to Rosen refer to the book Discrete Mathematics and its Ap-
plications, 8th edition by K. Rosen.

References to BG refer to the book Computer Algorithms: Introduction
to Design and Analysis, 3rd edition by Sara Baase and Allen Van Gelder.

This document will inevitably contain mistakes. If you find some, please
report them to your TA so that we can correct them.

Sheet 11

Exercise from course webpage

A core problem for an online machine scheduling algorithm is whether to
make a level or a skewed schedule. For instance, just considering m = 2
and the sequences 1, 1 and 1, 1, 2, we do not know what the best option
is for the second job: placing it on the same machine as the first job or
not. (Because this depends on the future: do we receive a third job of size
2 or not?) Try to randomize the decision as we did for the Treasure Hunt
problem in the lecture. Assuming you get one of these two sequences,
can you get an expected ratio smaller than %?

Suggested solution

Let A be the algorithm that places the first job on some machine 1 and then
places the second job on machine 2 with probability p and on machine 1 with
probability 1 — p. A places the third job on machine 2 deterministically (if
it arrives). We don’t care what A does after the third job in this exercise.
For o1, we have

EA(o)] =p+2(1-p)=2-p
and OPT(g;) = 1,50 R > (2 — p)/1 =2 — p. For 09, we have

E[A(0s)] =3p+2(1—p)=2+p

and OPT(03) = 2,50 R > (2 +p)/2 = 1+ p/2. Since the competitive ratio
of A is bounded from below by both 2 —p and 1+ p/2, we should pick p such
that the largest of the two ratios is minimized. Since 2 — p is decreasing in
p and 1+ p/2 is increasing in p, their maximum is minimized when they are
equal. We find that

p
2—p=1+=%
P +2
3
s1="
5P
oy 2
p=3

Setting p = 2/3, the lower bound provided by the sequences o; and oy is
2—-2/3=4/3<3/2.

Exercise from course webpage

A Professor Larsen with extremely poor eyesight is at a long, long wall.
He’s told that there is a hole somewhere where he can get out, but he
won’t be able to see it unless he’s right at it; and he doesn’t know if it’s
to the left or to the right. The hole is a whole number of steps away
from the professor. Devise an algorithm the professor can use to escape.
What’s the competitive ratio of your algorithm? (Of course, OPT is just
the distance from the professor to the hole.)

Suggested solution

Let call our algorithm A. Perhaps the simplest approach would be to first
move 1 step in one direction, then 2 steps in the other, then 3 in the first
and so on. However, this algorithm turns out not to be competitive at all.
If the hole is n steps in one direction, then our algorithm makes at least
1424---+n=n(n+1)/2 steps before finding the hole whereas OPT makes
only n. Thus, R(A) > (n+ 1)/2 which depends on n! Thus, there exist no
constants b and ¢ such that A(c) < ¢- OpT(0) + b.

A better idea is to take larger chunks of steps in each direction. The
strategy presented here is not optimal, but is chosen for the simplicity of its
analysis. The strategy we went through in class is better.

The strategy is as follows: in the k-th round, move 2* steps right, 2¢+!
steps left and 2* steps right again such that we are back at the starting point.
The number of steps taken in the k-th round is then 2F + 2k+1 4 2k — 2k+2,
Using this strategy, we find the door in the k-th round where k is the least
integer such that 2¥ > n. The least k for which 2% > n is k = [log,(n)] <
logy(n) + 1. The number of steps taken from round O through round k
is 22 4+ 23 4 ... f 2FH2 < QRS < Dlom(m)+d — 16 . Qlog2(n) — 16n. Thus,
R(A) < 12 = 16.

n

Exercise from course webpage

Show an example where lazy DC benefits from being lazy and one where
it doesn’t.

Suggested solution

In the trivial case of an empty input sequence or a sequence with requests
only to points which already have servers, lazy DC has no advantage over
Dc. Figure 1 shows a simple example where lazy DC benefits from being
lazy.

A B

® ¢
1
° @ &

Server O
re quesé Y

g
©®

Figure 1: A sequence where lazy DC benefits from being lazy.

Exercise from course webpage

Show that if there exists an infinite family of sequences such that 1) for
some fixed constant b > 0, we have that ALG(c) > kOPT(0) — b for any
o in the family, and 2) for any d, there exists a o in the family such that
OpT(0) > d, then ALG cannot be (k — €)-competitive for any ¢ > 0.

Suggested solution
The intuition here is that, based on a, b, and €, we can always pick o such
that OPT(0) is so large that we obtain a contradiction to ALG being (k — €)-
competitve.

Fix an arbitrary € > 0. Suppose ALG is (k — €)-competitive. Then there

exists a such that
ALG(o) < (k—€)OpPT(0) +a (1)

for all o. If we can find a ¢ such that (1) is violated, then ALG cannot be
(k — €)-competitive. We now show that such a o exists. Indeed,

kOpT(0) —b> (k —€)OPT(0) +a
< kOprT(0) — (kK —€)OPT(0) > a+b
< eOPT(0) >a+b
< Ort(o) > aT_I_b

and there exists a o in the family such that OPT(0) > “ by 2). Let o be
such a sequence. By 1) and the choice of o,

AvLc(o) > kOpT(0) — b > (k — €)OPT(0) + a,

which is a contradiction to (1). Since € was arbitrary, we conclude that ALG
cannot be (k — €)-competitive for any € > 0.

Exercise from course webpage

Prove that there exists a minimum weight matching where the server
Dc moves (when it only moves one) is matched to the server OPT just
moved.

Suggested solution
We consider the case where DC moves only the rightmost server. The proof
for the case where DC moves the leftmost server is identical.

Let Appr and Apc be the servers that OpPT and DC move, respectively.
Let M be a minimum weight matching between OPT’s and DcC’s servers. If
Apc is not matched to Appr in M, we show that one can modify M such
that Apc is matched to Appr without increasing the weight of M.

Suppose Apc is not matched to Agpr in M and let Bopr and Bpc be the
servers that Apc. and Appr are matched to, respectively. Since DC moves
only the rightmost server, Bp. is to the left of Ap. (see top of Figure 2).
The claim follows by considering the 4 possible cases for the relative position
of Bopr. The 4 cases are illustrated in Figure 2.

A4
Boc Ay
(ase |
a+b a+b+c
| S !
Boc Ay [y Boc Ay
Case 'L
a+b+c ath
- ¢ \V4 w A4
Boc o b CoeT Boc ‘*u Boer [
b+c
Caﬁe > a+b+c a .
Gef:f v ¢ uﬁopr N -) a V! b mu/\opr
oc 5 A I Anc
ase ¢
¢ btc

[C
~ [5 a 13 AoeT Y va 2 b I_JC—%A ofT
.-[l\, S }
%;L_Boz/_] Ay borr Boc Ay

a+b

Figure 2: Illustration of the transformation of the matching M.

Exercise from course webpage

Discuss whether or not one should assume that the adversary knows the
coin flips of the algorithm - in the light that we want results in our model
to say something about the real world.

Suggested solution

Probably not (no pun intended). When measuring the quality of an online
algorithm in terms of its competitive ratio, we are assuming a worst-case
scenario for the algorithm, in which the input is constructed by an evil ad-
versary knowing the implementation of the algorithm. One could argue that
this is already not a very realistic model, as input in most real world scenar-
ios is not constructed by an adversary. Allowing the adversary to know the
coin flips of the algorithm would correspond to analyzing a scenario in which
the input depends not only the implementation of the algorithm, but also on
random events. This is arguably even less realistic.

Exercise from course webpage

Consider how one might generalize DC to working on trees. No proofs
are expected.

Suggested solution

There are several ways to generalize DC to trees. We discussed a few ideas
in class. The following generalization can be shown to be k-competitive,
although we do not provide a proof here.

When we get a request for a point, start moving all servers with an
unobstructed (by other servers) path to the requested point towards the
request at the same speed. Whenever the path to a server becomes obstructed
by another server, stop moving that server. When one server reaches the
point, stop moving all servers.

If the tree is a path, this algorithm is equivalent to DC on the line.

