
DM582 Exercises - Sheet 12

Mads Anker Nielsen Tobias Samsøe Sørensen

April 30, 2025

This document contains exercises from the course DM582 (spring 2025).
Most exercises are from the book Introduction to Algorithms, 4th edition
by Cormen, Leiserson, Rivest, and Stein (CLRS), the book Algorithm De-
sign, 1st edition by J. Kleinberg and E. Tardos (KT), and the book Discrete
Mathematics and its Applications, 8th edition by K. Rosen.

The solutions given here might differ from the solutions discussed in class.
In class, we place more emphasis on the intuition leading to the correct
answer. Please do not consider reading these solutions an alternative to
attending the exercise classes.

References to CLRS refer to the book Introduction to Algorithms, 4th
edition by Cormen, Leiserson, Rivest, and Stein.

References to KT refer to the book Algorithm Design, 1st edition by J.
Kleinberg and E. Tardos.

References to Rosen refer to the book Discrete Mathematics and its Ap-
plications, 8th edition by K. Rosen.

References to BG refer to the book Computer Algorithms: Introduction
to Design and Analysis, 3rd edition by Sara Baase and Allen Van Gelder.

This document will inevitably contain mistakes. If you find some, please
report them to your TA so that we can correct them.

1



Sheet 12

CLRS Exercise 9.3-1

Exercise

In the algorithm SELECT, the input elements are divided into groups of
5. Show that the algorithm works in linear time if the input elements
are divided into groups of 7 instead of 5.

Suggested solution
The analysis here is almost identical. The algorithm still does Θ(n) work
outside of the recursion, noting that we can still sort each group of 7 in
constant time. Let x be the median of group medians chosen as the pivot.
The change to 7-element groups causes each group with a median of at least
x to contain 4 elements that are greater than or equal to x. Thus, there
are 4

(⌊
g
2

⌋
+ 1

)
≥ 2g elements that are greater or equal to x. Similarly,

there are 4
⌈
g
2

⌉
≥ 2g elements less than or equal to x. Since there are 7g

elements being partitioned, the largest side of any partition contains at most
7g−2g = 5g ≤ 5n

7
elements. So the recursive call on one side of the partition

costs no more than T (5n
7
). The recursive call to find x costs T (n

7
), so in total,

the worst-case running time T (n) is bounded by the recurrence

T (n) ≤ T
(n
7

)
+ T

(
5n

7

)
+O(n).

We show by induction that there exists a constant c such that T (n) ≤ cn for
all n > 0, from which it follows that T (n) = O(n). For the base case, where
n ≤ 6, we can certainly choose c such that T (n) ≤ cn, since T (n) will be
constant for each n = 1, 2, . . . , 6.

Next, consider the inductive step where n ≥ 7. By the induction hypoth-
esis, T

(
n
7

)
≤ c · n

7
and T

(
5n
7

)
≤ c · 5n

7
. Furthermore, the O(n) term in the

recurrence is bounded by c′n for some c′. If we choose c ≥ 7c′, then it follows
that

T (n) ≤ c · n
7
+ c · 5n

7
+ c′n

≤ c · 6
7
n+ c · 1

7
n

= cn

which is what we wanted.

2



CLRS Exercise 9.3-3

Exercise

Show how to use SELECT as a subroutine to make quicksort run in
O(n lg n) time in the worst case, assuming that all elements are distinct.

Suggested solution
We can find the median in linear time with SELECT

(⌈
n
2

⌉)
and then parti-

tion around it in linear time using PARTITION-AROUND. As in the standard
QUICKSORT procedure, the procedure is then called recursively on both sides
of the partition. Since SELECT runs in linear time, the work done outside of
the recursive calls is still O(n). Furthermore, this approach always produces
a maximally balanced partition, and we have seen that quicksort achieves a
worst-case running time of O(n lg n) in this case.

3



CLRS Exercise 9.3-6

Exercise

You have a “black-box” worst-case linear-time median subroutine. Give
a simple, linear-time algorithm that solves the selection problem for an
arbitrary order statistic.

Suggested solution
Let SELECT’ denote this new algorithm. The problem is to find the ith
smallest element in the array A[p : r]. We can find the median using the
black-box and partition around it, which takes linear time in total. Then we
can follow the same procedure as RANDOMIZED-SELECT and SELECT. Let q be
the index of the median after the partition, and let k = q − p + 1. If i = k,
then we can just return the median. If instead i < k, then the target element
is in the low side of the partition and we can find it by recursively finding
the ith smallest element in the low side A[p : q − 1]. Otherwise, i > k and
we can find the (i − k)th smallest element in the high side of the partition
A[q + 1 : r].

By the choice of the median as the pivot, we know that SELECT’ is called
recursively on an input which contains at most half of the elements in the
subarray. Additionally, the work done outside the recursive call is O(n), so
the worst-case running time T (n) is bounded by the recurrence

T (n) ≤ T
(n
2

)
+O(n).

Now, there exists a constant c such that the function represented by the O(n)
term is bounded by cn. Thus, we can expand the recurrence to get

T (n) ≤ T
(n
2

)
+ cn ≤ cn+ c

n

2
+ c

n

4
+ c

n

8
+ · · ·+O(1)

where the O(1) term denotes the cost of the base case. This is a geometric
series and is bounded by 2cn+O(1) = O(n), so SELECT’ runs in linear time.

4



CLRS Exercise 9.3-7

Exercise

Professor Olay is consulting for an oil company, which is planning a
large pipeline running east to west through an oil field of n wells. The
company wants to connect a spur pipeline from each well directly to the
main pipeline along a shortest route (either north or south), as shown in
Figure 9.4. Given the x- and y-coordinates of the wells, how should the
professor pick an optimal location of the main pipeline to minimize the
total length of the spurs? Show how to determine an optimal location in
linear time. Figure 9.4 shown below.

Suggested solution
If n is odd, then the optimal position of the pipeline is at the median (that
is, the

⌈
n
2

⌉
th smallest) of all y-coordinates of the points. Placing the pipeline

here ensures an equal number of points above and below it. Moving the
pipeline up or down reduces the distance to k points by some amount while
increasing the distance to k+1 points by the same amount, so it is optimal.

If n is even, then we have a bit more wiggle room, and can place the
pipeline anywhere between the two middle points (which have order statistics
n/2 and n/2 + 1) since this ensures an equal number of points above and
below the pipeline.

In any case, finding the median with SELECT gives an optimal location in
linear time.

5



BG Exercise 5.20

Exercise

Consider the problem of determining if a bit string of length n contains
two consecutive zeroes. The basic operation is to examine a position in
the string to see if it is a 0 or a 1. For each n = 2, 3, 4, 5 either give an
adversary strategy to force any algorithm to examine every bit, or give
an algorithm that solves the problem by examining fewer than n bits.

Suggested solution
For n = 2, we can construct an adversary strategy that always sets the first
examined bit to 0, and the second examined bit to 1 (the second bit could
also be set to 0). Since any algorithm will see a 0 as the first examined bit, it
must examine the other bit to determine whether there are two consecutive
zeroes.

For n = 3, we give an adversary strategy. We need to consider all posible
actions by an algorithm. An algorithm can choose between which of the three
bits to examine first. If the algorithm examines the first bit, the adversary
responds with a 1. After this, we notice that we have reduced the problem to
the n = 2 case, since the 1 bit in the first position doesn’t allow for any new
00 pairs compared to n = 2. Thus, the algorithm must check the remaining
two bits in this case. If the algorithm had instead chosen to examine the
third bit first, this case is completely symmetric to examining the first bit
first, so it must also check all three bits. Lastly, if the algorithm examines
the middle bit, the adversary can respond with a 0, and then set the first
and last bit as 1s. This also forces any algorithm to check all three bits.

For n = 4, we give an algorithm that examines only two or three bits.
The algorithm starts by simply checking the two middle bits. If they are
both 0s it halts, having found a pair, and if they are both 1s then we don’t
need to check the remaining two bits so it also halts in this case. If one of
the middle bits is a 1 and the other a 0, then we only need to check the bit
adjacent to the known 0 bit, resulting in three checks in total.

For n = 5, we give an adversary strategy. First, we argue that any
succesful adversary can be modified so that it never creates a 00 pair. If the
adversary creates a 00 pair before all bits are checked, then it fails at the
task. If the adversary creates a 00 pair when the last bit is checked, it could
just as well have responded with a 1 for the last bit, still forcing all bits to
be checked. We need to consider only three cases for the first examined bit,
since examining bit 1 or 2 first is symmetric to examining bit 5 or 4 first.

1. If the algorithm examines the first bit, the adversary makes it a 0.
Now, since we can guarantee that the adversary never makes a 00 pair

6



anywhere, any algorithm is forced to eventually check the second bit.
Therefore, we may assume that the algorithm immediately checks the
second bit, and the adversary responds with 1. Thus, there are only
three bits remaining, corresponding to the case when n = 3, and we
can just use that adversary strategy for n = 3 which guarantees that
the algorithm must check all 5 bits.

2. If the algorithm examines the second bit, the adversary responds with
a 0. Then, by the same argument as before, the algorithm is forced to
check bits 1 and 3, which are both set to 1 by the adversary. Bits 4
and 5 are then covered by the n = 2 case.

3. If the algorithm examines the middle bit first, we set it to a 1. Then
we can use use the n = 2 strategy for two first and two last bits.

In all cases, any algorithm must examine all 5 bits.

7



BG Exercise 5.21

Exercise

Suppose you have a computer with a small memory and you are given a
sequence of keys in an external file (on a disk or tape). Keys can be read
into memory for processing, but no key can be read more than once.

a. What is the minimum number of storage cells needed for keys in
memory to find the largest key in the file? Justify your answer.

b. What is the minimum number of cells needed for keys in memory
to find the median? Justify your answer.

Suggested solution

a. We can use the standard algorithm to find the maximum, which re-
quires only 2 storage cells. One cell is used to store the maximum
found so far, and the other is used to load in new values from the file,
which are compared to max and swapped if larger. Any algorithm that
finds the maximum key must perform some comparisons, and we need
to have both keys in memory to compare them, so we need at least 2
cells. Therefore, the algorithm is optimal w.r.t. the number of cells.

b. We give an algorithm that uses
⌈
n
2

⌉
+ 1 storage cells. First, allocate

an array A of size
⌈
n
2

⌉
and an additional cell x used for reading in new

values. Then, read the first
⌈
n
2

⌉
keys from the file into A. Next, for

each key in the file, read the key into x, and compare max(A) with x.
If x is smaller than max(A) then replace max(A) with the value stored
in x. When this loop terminates, A will contain the

⌈
n
2

⌉
smallest keys,

and the median will be max(A). To see why, consider a key k among
the

⌈
n
2

⌉
smallest keys, that is compared to max(A). Now, there are at

most
⌈
n
2

⌉
− 1 keys smaller than k, so A must contain at least one key

larger than k, and thus k will be inserted into A. Furthermore, the
keys removed from A are not among the

⌈
n
2

⌉
smallest, so k will not be

removed.

For an algorithm that uses fewer storage cells, it won’t be able to keep
track of half of the keys, and so an adversary would, at least intuitively,
be able to place the median among the discarded keys.

8



CLRS Exercise 9.3-5

Exercise

Show how to determine the median of a 5-element set using only 6 com-
parisons.

Suggested solution
Let x[1 : 5] be a 5-element array. The following procedure finds the median
with 6 comparisons.

1. First, compare x[1] with x[2] and swap them so the smallest is in x[1].

2. Compare x[3] with x[4] and swap them so the smallest is in x[3].

3. Compare x[1] with x[3] and discard the smallest, since it is known
to smaller than 3 elements, and thus cannot be the median. Assume
x[1] < x[3], so x[1] is discarded, the other case being symmetric.

4. Compare x[2] with x[5] and swap them so the smallest is in x[5].

5. Compare x[5] with x[3] and discard the smaller. Assume x[5] < x[3],
the other case again being symmetric.

6. Compare x[2] with x[3], and the median is then min (x[2], x[3]).

This works by first discarding 2 elements that are known to be smaller than
3 other elements. Then we have x[2], x[3] and x[4] remaining and we know
x[3] < x[4]. Thus, if x[2] < x[3] then x[2] is smaller than 2 elements and
must be the median, and conversely if x[3] < x[2] then x[3] is smaller than 2
elements and must be the median.

9


