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This document contains exercises from the course DM582 (spring 2025).
Most exercises are from the book Introduction to Algorithms, 4th edition
by Cormen, Leiserson, Rivest, and Stein (CLRS), the book Algorithm De-
sign, 1st edition by J. Kleinberg and E. Tardos (KT), and the book Discrete
Mathematics and its Applications, 8th edition by K. Rosen.

The solutions given here might differ from the solutions discussed in class.
In class, we place more emphasis on the intuition leading to the correct
answer. Please do not consider reading these solutions an alternative to
attending the exercise classes.

References to CLRS refer to the book Introduction to Algorithms, 4th
edition by Cormen, Leiserson, Rivest, and Stein.

References to KT refer to the book Algorithm Design, 1st edition by J.
Kleinberg and E. Tardos.

References to Rosen refer to the book Discrete Mathematics and its Ap-
plications, 8th edition by K. Rosen.

This document will inevitably contain mistakes. If you find some, please
report them to your TA so that we can correct them.
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Sheet 10

Rosen, 7.2, 6

Exercise

What is the probability of these events when we randomly select a per-
mutation of {1, 2, 3}?

a) 1 precedes 3.

b) 3 precedes 1.

c) 3 precedes 1 and 3 precedes 2.

Suggested solution

a) The sample space is small, so explicit enumeration of the outcomes
of the event is feasible. The permutations for which 1 precedes 3 are
123, 132, and 213. Since the probability of each outcome is 1

3!
, the

probability of the event is 3
3!
= 1

2
.

b) We could enumerate the outcomes again. Alternatively, we can observe
that the event that 3 precedes 1 is the complement of the event that 1
precedes 3, so by part a), the probability is 1− 1

2
= 1

2
.

c) The only permutations for which 3 precedes both 1 and 2 are 312 and
321. Thus, the probability of the event is 2

3!
= 1

3
.
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Rosen, 7.2, 11

Exercise

Suppose that E and F are events such that p(E) = 0.7 and p(F ) = 0.5.
Show that p(E ∪ F ) ≥ 0.7 and p(E ∩ F ) ≥ 0.2.

Suggested solution
Since E ⊆ E ∪ F and by the definition of the probability of an event

0.7 = p(E) =
∑
s∈E

p(s) ≤
∑

s∈E∪F

p(s) = p(E ∪ F ).

For the second part, we have

p(E ∪F ) = p(E)+ p(F )− p(E ∩F ) = 0.7+0.5− p(E ∩F ) = 1.2− p(E ∩F )

and since p(E ∪ F ) ≤ 1, necessarily p(E ∩ F ) ≥ 0.2.
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Rosen, 7.2, 36

Exercise

Use mathematical induction to prove that if E1, E2, . . . , En is a sequence
of n pairwise disjoint events in a sample space S, where n is a positive
integer, then p(∪n

i=1Ei) =
∑n

i=1 p(Ei).

Suggested solution
For n = 1, the claim is that p(E1) = p(E1), which is true. Let n > 1. Let
E = E1 ∪E2 ∪ · · · ∪En−1. By the induction hypothesis, p(E) =

∑n−1
i=1 p(Ei).

We must have E ∩En = ∅ since if there exists some s ∈ E ∩En then s ∈ Ei

for some i < n, contradicting that En and Ei are disjoint. Thus, by Theorem
2 of section 7.1.3, we have

p(E ∪ En) = p(E) + p(En)− p(E ∩ En)

= p(E) + p(En)

=
n−1∑
i=1

p(Ei) + p(En)

=
n∑

i=1

p(Ei)

as desired.

4



Rosen, 7.2, 38

Exercise

A pair of dice is rolled in a remote location and when you ask an hon-
est observer whether at least one die came up six, this honest observer
answers in the affirmative.

a. What is the probability that the sum of the numbers that came
up on the two dice is seven, given the information provided by the
honest observer?

b. Suppose that the honest observer tells us that at least one die came
up five. What is the probability the sum of the numbers that came
up on the dice is seven, given this information?

Suggested solution

a.) Let E be the event that the sum of the numbers that came up on the
two dice is seven, and let F be the event that at least one die came up
six. By the definition of conditional probability, we have

p(E | F ) =
p(E ∩ F )

p(F )
.

We start by computing p(F ). The event F is the complement of the

event that at no die came up six, which is
(
5
6

)2
assuming the dice are

rolled independently. Thus, p(F ) = 1 −
(
5
6

)2
= 11/36. There are

only two outcomes in the event E ∩ F , namely (1, 6) and (6, 1), so
p(E ∩ F ) = 2

36
. Thus,

p(E | F ) =
2/36

11/36
=

2

11
.

b.) The above argument is easily adapted to show that the answer does
not change if we are told that at least one die came up five instead of
six. Thus, the answer is again 2

11
.
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Rosen, 7.4, 4

Exercise

A coin is biased so that the probability a head comes up when it is flipped
is 0.6. What is the expected number of heads that come up when it is
flipped 10 times?

Suggested solution
For i = 1, 2 . . . , 10, let Xi be an indicator random variable such that Xi(s) =
1 if the i-th flip in the outcome s is a head, and 0 otherwise. Let X =∑n

i=1Xi. Then X(s) is the number of heads in the outcome s. For each
i = 1, 2, . . . , 10 the probability that Xi = 1 is 0.6, so E(Xi) = 0.6. By
linearity of expectation, we have

E[X] = E

[
10∑
i=1

Xi

]
=

10∑
i=1

E[Xi] = 10 · 0.6 = 6.
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Rosen, 7.4, 8

Exercise

What is the expected sum of the numbers that appear when three fair
dice are rolled?

Suggested solution
For i = 1, 2, 3, let Xi be a random variable such that Xi(s) is the value of the
i-th die in the outcome s. Let X =

∑3
i=1 Xi. Then X(s) is the sum of the

values of the dice in the outcome s. For each i = 1, 2, 3, the expected value
of Xi is E(Xi) =

1
6
(1 + 2 + 3 + 4 + 5 + 6) = 3.5. By linearity of expectation,

we have

E[X] = E

[
3∑

i=1

Xi

]
=

3∑
i=1

E[Xi] = 3 · 3.5 = 10.5.
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Rosen, 7.4, 18

Exercise

Suppose that X and Y are random variables and that X and Y are
nonnegative for all points in a sample space S. Let Z be the random
variable defined by Z(s) = max(X(s), Y (s)) for all elements s ∈ S. Show
that E(Z) ≤ E(X) + E(Y ).

Suggested solution
For any outcome s ∈ S, we have Z(s) = max(X(s), Y (s)) ≤ X(s) + Y (s).
Note that the inequality does not necessarily hold if X and Y could be
negative. Thus, by the definition of the expected value of a random variable,
we have

E[Z] =
∑
s∈S

Z(s)p(s)

≤
∑
s∈S

(X(s) + Y (s))p(s)

=
∑
s∈S

X(s)p(s) +
∑
s∈S

Y (s)p(s)

= E[X] + E[Y ].

Note: A broader point here is that if an inequality between random vari-
ables holds for all outcomes, then the inequality also holds in expectation.
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Rosen, 7.4, 29.a

Exercise

Let Xn be the random variable that equals the number of tails minus the
number of heads when n fair coins are flipped.

a) What is the expected value of Xn?

Suggested solution
For i = 1, 2, . . . , n, let Xi be a random variable such that Xi(s) = 1 if the
i-th coin flip in the outcome s is a tail, and −1 otherwise. Let X =

∑n
i=1Xi.

ThenX(s) is the number of tails minus the number of heads in the outcome s.
For each i = 1, 2, . . . , n, the expected value of Xi is E[Xi] =

1
2
·1+ 1

2
·(−1) = 0.

By linearity of expectation, we have

E[X] = E

[
n∑

i=1

Xi

]
=

n∑
i=1

E[Xi] = n · 0 = 0.
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Rosen, 7.4, 37

Exercise

Let X be a random variable on a sample space S such that X(s) ≥ 0
for all s ∈ S. Show that p(X(s) ≥ a) ≤ E(X)/a for every positive real
number a. This inequality is called Markov’s inequality.

Suggested solution
Recall that, formally, X(s) ≥ a is the event E≥a = {s ∈ S | X(s) ≥ a}. By
definition,

E[X] =
∑
s∈S

X(s)p(s).

Let E<a = {s ∈ S | X(s) < a}. Then (E≥a, E<a) is a partition of S into two
disjoint sets, so we can split the sum in the above equation into two sums
and still have the same terms. Now, we get

E[X] =
∑

s∈E≥a

X(s)p(s) +
∑

s∈E<a

X(s)p(s)

≥
∑

s∈E≥a

ap(s) +
∑

s∈E<a

0 · p(s)

= a
∑

s∈E≥a

p(s) = ap(E≥a).

Dividing both sides by a gives

p(X ≥ a) = p(E≥a) ≤
E[X]

a

as desired.
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Rosen, 7.4, 49

Exercise

What is the expected number of bins that remain empty when m balls
are distributed into n bins uniformly at random?

Suggested solution
For i = 1, 2, . . . , n, let Xi be a random variable such that Xi(s) = 1 if the
i-th bin is empty in the outcome s, and 0 otherwise. Let X =

∑n
i=1Xi.

Then X(s) is the number of bins that are empty in the outcome s. For
each i = 1, 2, . . . , n, the probability that Xi = 1 is the probability that, for
all m balls, the ball is not placed in the i-th bin, which is

(
n−1
n

)m
. Thus,

E[Xi] =
(
n−1
n

)m
. By linearity of expectation, we have

E[X] = E

[
n∑

i=1

Xi

]
=

n∑
i=1

E[Xi] = n

(
n− 1

n

)m

.
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Rosen, 7.4, supplementary exercise 13

Exercise

Suppose n people, n ≥ 3, play “odd person out” to decide who will
buy the next round of refreshments. The n people each flip a fair coin
simultaneously. If all the coins but one come up the same, the person
whose coin comes up different buys the refreshments. Otherwise, the
people flip the coins again and continue until just one coin comes up
different from all the others.

a) What is the probability that the odd person out is decided in just
one coin flip?

b) What is the probability that the odd person out is decided with
the kth flip?

c) What is the expected number of flips needed to decide the odd
person out with n people?

Suggested solution

a) There are two ways for the odd person out to be decided in just one
coin flip: either exactly one person flips heads or exactly one person
flips tails.

There are n outcomes in which exactly one person flips heads, n out-
comes in which exactly one person flips tails, and none in which both
occur since n ≥ 3. Since all outcomes are equally likely, the probability
that the odd person out is decided in just one coin flip is 2n

2n
= n

2n−1 .

b) In order for the odd person out to be decided with the kth flip, the odd
person out must not have been decided in the first k − 1 flips and the
kth flip must decide the odd person out. The probability that the odd
person out is decided in any given flip is n

2n−1 by part a), and thus the
probability that the odd person out is not decided in any given flip is
1− n

2n−1 . From the description of the game, it is clear that each trial is
independent. Thus, the probability that the odd person out is decided
with the kth flip is (

1− n

2n−1

)k−1

· n

2n−1
.

c) Let X be a random variable such that X(s) = s is the number of flips
performed in the outcome s. Then the expected number of flips needed
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to decide the odd person out is E[X]. We notice that X is a geometric
random variable with parameter p = n

2n−1 . The expected value of a

geometric random variable with parameter p is 1
p
, so E[X] = 1

p
= 2n−1

n
.

Note: The explanation for the expected value of a geometric random
variable can be found in Rosen section 7.4.5. The last step in their
derivation requires calculus, and we will not go through it here.
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Exercise from course webpage

Exercise

For a graph, G = (V,E), a spanning bipartite subgraph G′ of G is defined
by a partition (V1, V2) of V , and the edges E ′ ⊆ E that have an endpoint
in both parts.

Consider the following randomized algorithm for finding a spanning
bipartite subgraph of an arbitrary graph: Independently, for each vertex
v ∈ V , decide uniformly at random if vertex v is in V1 or V2.

1. Give a lower bound on the expected number of edges m′ in E ′ as
a function of m = |E|.

2. How can you use your result to conclude that any graph has a
spanning bipartite subgraph with m′ ≥ m/2?

3. Design a deterministic, polynomial-time algorithm for this prob-
lem, finding a spanning bipartite subgraph G′ of any graph G,
where m′ ≥ m/2.

Suggested solution

1. For e ∈ E let Xe be an indicator random variable for the event that
e ∈ |E ′|. Then X =

∑
e∈E Xe is a random variable whose value is the

number of edges m′ in the resulting bipartite graph. An edge uv ∈ E ′

iff u and v are in different parts of the partition (V1, V2), which happens
with probability 1

2
. Thus,

E[Xe] =
1

2

for any e ∈ E and by linearity of expectation

E[X] =
∑
e∈E

1

2
=

1

2
m.

2. Since the expected number of edges in a bipartite graph obtained from
a random partition is 1

2
m, there must be some partition (V1, V2) such

that the number of edges in the induced bipartite graph is at least 1
2
m.

3. The following algorithm achieves this:
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(i) Initially, set V1 = V and V2 = ∅.
(ii) Repeatedly pick v ∈ Vi for some i ∈ [2] such that v has more than

half its neighbors in Vi and move v to V3−i.

(iii) When no such vertex v exists, return (V1, V2).

We observe that when moving a vertex v from Vi to V3−i, the number
of edges in G′ increases by the choice of v. Thus, the given procedure
terminates after repeating step (ii) at most |E| times and each iteration
is easily implemented in polynomial time (performing an iteration in
O(|V |2) time is achievable, but maybe you can do better).

When the algorithm terminates, dG′(v) ≥ 1
2
dG(v) for all v ∈ V and

thus

m′ =
1

2

∑
v∈V

dG′(v)

≥ 1

2

∑
v∈V

1

2
dG(v)

=
1

4

∑
v∈V

dG(v)

=
1

2
m

where we use that
∑

v∈V (H) dH(v) = 2|E(H)| for any graph H.1

1For a graph H, dH(v) denotes the degree of the vertex v in H
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