
DM582 Exercises - Sheet 4

Mads Anker Nielsen Tobias Samsøe Sørensen

March 5, 2025

This document contains exercises from the course DM582 (spring 2025).
Most exercises are from the book Introduction to Algorithms, 4th edition
by Cormen, Leiserson, Rivest, and Stein (CLRS), the book Algorithm De-
sign, 1st edition by J. Kleinberg and E. Tardos (KT), and the book Discrete
Mathematics and its Applications, 8th edition by K. Rosen.

The solutions given here might differ from the solutions discussed in class.
In class, we place more emphasis on the intuition leading to the correct
answer. Please do not consider reading these solutions an alternative to
attending the exercise classes.

References to CLRS refer to the book Introduction to Algorithms, 4th
edition by Cormen, Leiserson, Rivest, and Stein.

References to KT refer to the book Algorithm Design, 1st edition by J.
Kleinberg and E. Tardos.

References to Rosen refer to the book Discrete Mathematics and its Ap-
plications, 8th edition by K. Rosen.

This document will inevitably contain mistakes. If you find some, please
report them to your TA so that we can correct them.

1

Sheet 4

KT, Exercise 1

Exercise

3-Coloring is a yes/no question, but we can phrase it as an optimization
problem as follows. Suppose we are given a graph G = (V,E), and
we want to color each node with one of three colors, even if we aren’t
necessarily able to give different colors to every pair of adjacent nodes.
Rather, we say that an edge (u, v) is satisfied if the colors assigned to u
and v are different. Consider a 3-coloring that maximizes the number of
satisfied edges, and let c∗ denote this number. Give a polynomial-time
algorithm that produces a 3-coloring that satisfies at least 2

3
c∗ edges. If

you want, your algorithm can be randomized; in this case, the expected
number of edges it satisfies should be at least 2

3
c∗.

Suggested solution
We consider the number of edges satisfied by the straightforward randomized
algorithm which colors each vertex with one of 3 colors independently and
uniformly at random. For each edge (u, v), the probability that the edge is
satisfied is exactly the probability that u has a color different from v, which
is 2

3
. Let Xe be the indicator random variable which takes the value 1 if e is

satisfied and 0 otherwise. Let X =
∑

e∈E Xe be the total number of satisfied
edges. By linearity of expectation,

E(X) =
∑
e∈E

E(Xe) =
∑
e∈E

2

3
=

2

3
|E| ≥ 2

3
c∗

where the last inequality holds since c∗ is at most the number of edges in the
graph.

2

KT, Exercise 2

Exercise

Consider a county in which 100,000 people vote in an election. There are
only two candidates on the ballot: a Democratic candidate (denoted D)
and a Republican candidate (denoted R). As it happens, this county is
heavily Democratic, so 80, 000 people go to the polls with the intention of
voting for D, and 20, 000 go to the polls with the intention of voting for
R. However, the layout of the ballot is a little confusing, so each voter,
independently and with probability 1/100 votes for the wrong candidate
– that is, the one that he or she didn’t intend to vote for. (Remember
that in this election, there are only two candidates on the ballot.) Let X
denote the random variable equal to the number of votes received by the
Democratic candidate D, when the voting is conducted with this process
of error. Determine the expected value of X, and give an explanation of
your derivation of this value.

Suggested solution
Let XD be the random variable which denotes the number of democratic
voters who vote for D and let XR be the random variable which denotes the
number of republican voters who vote for D. Then X = XD +XR. Now,

E[XD] = 0.99 · 80000

since the probability that a democratic voter votes for D is 99%. Similarly,

E[XR] = 0.01 · 20000

since the probability that a republican voter votes for D is 1%. By linearity
of expectation,

E[X] = E[XD] + E[XR] = 0.99 · 80000 + 0.01 · 20000 = 79400.

3

KT, Exercise 3

Exercise

In Section 13.1, we saw a simple distributed protocol to solve a particu-
lar contention-resolution problem. Here is another setting in which ran-
domization can help with contention resolution, through the distributed
construction of an independent set.

Suppose we have a system with n processes. Certain pairs of pro-
cesses are in conflict, meaning that they both require access to a shared
resource. In a given time interval, the goal is to schedule a large subset
S of the processes to run – the rest will remain idle – so that no two
conflicting processes are both in the scheduled set S. We’ll call such a
set S conflict-free.

One can picture this process in terms of a graph G = (V,E) with
a node representing each process and an edge joining pairs of processes
that are in conflict. It is easy to check that a set of processes S is conflict-
free if and only if it forms an independent set in G. This suggests that
finding a maximum-size conflict-free set S, for an arbitrary conflict G,
will be difficult (since the general Independent Set Problem is reducible
to this problem). Nevertheless, we can still look for heuristics that find
a reasonably large conflict-free set. Moreover, we’d like a simple method
for achieving this without centralized control: Each process should com-
municate with only a small number of other processes and then decide
whether or not it should belong to the set S.

We will suppose for purposes of this question that each node has
exactly d neighbors in the graph G. (That is, each process is in conflict
with exactly d other processes.)

(a) Consider the following simple protocol.

Each process Pi independently picks a random value xi; it sets xi

to 1 with probability 1
2
and sets xi to 0 with probability 1

2
. It then

decides to enter the set S if and only if it chooses the value 1, and
each of the processes with which it is in conflict chooses the value
0.

Prove that the set S resulting from the execution of this protocol
is conflict-free. Also, give a formula for the expected size of S in
terms of n (the number of processes) and d (the number of conflicts
per process).

4

(b) The choice of the probability 1
2
in the protocol above was fairly

arbitrary, and it’s not clear that it should give the best system
performance. A more general specification of the protocol would
replace the probability 1

2
by a parameter p between 0 and 1, as

follows.

Each process Pi independently picks a random value xi; it sets xi

to 1 with probability p and sets xi to 0 with probability 1 − p. It
then decides to enter the set S if and only if it chooses the value
1, and each of the processes with which it is in conflict chooses the
value 0.

In terms of the parameters of the graph G, give a value of p so that
the expected size of the resulting set S is as large as possible. Give
a formula for the expected size of S when p is set to this optimal
value.

Suggested solution
For v ∈ V corresponding to a process Pi, let xv denote the value xi chosen
by process Pi.

(a) We start by showing that the resulting set S is indeed conflict-free
(independent). Suppose S is not conflict-free and let u, v ∈ S be such
that v and u are in conflict (uv ∈ E). u ∈ S so xu = 1 and xu′ = 0
for all neighbors u′ of u. In particular, xv = 0. But then v /∈ S, a
contradiction.

For all v ∈ V let Xv be the indicator random variable for the event
that v ∈ S. Then Xv = 1 iff xv = 1 and xv′ = 0 for all neighbors v′ of
v. v has exactly d neighbors and xv′ is set to 0 independently and with
probability 1

2
for all neighbors v′ of v. Thus,

E[Xi] = P [v ∈ S] =
1

2

(
1

2

)d

=
1

2d+1
.

Let X =
∑

v∈V Xv. Then X is a random variable whose value is the
size of S. By linearity of expectation,

E[X] =
∑
v∈V

E[Xv] =
n

2d+1
.

(b) Using the notation from the previous part, we have

E[Xv] = P [v ∈ S] = p (1− p)d

5

and
E[X] =

∑
v∈V

E[Xv] = np (1− p)d .

Thus, we must pick p to maximize p(1−p)d in order to maximize E[X].
We can do this taking the derivative of p(1− p)d with respect to p and
solving for 0. The equation to solve is

d

dp
p(1− p)d = −(1− p)d−1(dp+ p− 1) = 0

which has the solution p = 0 or p = 1
d+1

. Picking p = 0 is not optimal

since this results in E[X] = 0. Thus, the optimal value of p is p = 1
d+1

.
Substituting this value into the formula for E[X], we get

E[X] = n

(
1

d+ 1

)(
1− 1

d+ 1

)d

.

We notice that
(
1− 1

d+1

)d
approaches 1

e
as d becomes large.

6

KT, Exercise 4

Exercise

A number of peer-to-peer systems on the Internet are based on over-
lay networks. Rather than using the physical Internet topology as the
network on which to perform computation, these systems run protocols
by which nodes choose collections of virtual “neighbors” so as to define
a higher-level graph whose structure may bear little or no relation to
the underlying physical network. Such an overlay network is then used
for sharing data and services, and it can be extremely flexible compared
with a physical network, which is hard to modify in real time to adapt
to changing conditions.

Peer-to-peer networks tend to grow through the arrival of new partic-
ipants, who join by linking into the existing structure. This growth pro-
cess has an intrinsic effect on the characteristics of the overall network.
Recently, people have investigated simple abstract models for network
growth that might provide insight into the way such processes behave,
at a qualitative level, in real networks.

Here’s a simple example of such a model. The system begins with
a single node v1. Nodes then join one at a time; as each node joins,
it executes a protocol whereby it forms a directed link to a single other
node chosen uniformly at random from those already in the system. More
concretely, if the system already contains nodes v1, v2, . . . , vk−1 and node
vk wishes to join, it randomly selects one of v1, v2, . . . , vk−1 and links to
this node.

Suppose we run this process until we have a system consisting of nodes
v1, v2, . . . , vn; the random process described above will produce a directed
network in which each node other than v1 has exactly one outgoing edge.
On the other hand, a node may have multiple incoming links, or none
at all. The incoming links to a node vj reflect all the other nodes whose
access into the system is via vj; so if vj has many incoming links, this can
place a large load on it. To keep the system load-balanced, then, we’d
like all nodes to have a roughly comparable number of incoming links.
That’s unlikely to happen here, however, since nodes that join earlier in
the process are likely to have more incoming links than nodes that join
later. Let’s try to quantify this imbalance as follows.

(a) Given the random process described above, what is the expected
number of incoming links to node vj in the resulting network? Give
an exact formula in terms of n and j, and also try to express this

7

quantity asymptotically (via an expression without large summa-
tions) using Θ(·) notation.

(b) Part (a) makes precise a sense in which the nodes that arrive early
carry an “unfair” share of the connections in the network. Another
way to quantify the imbalance is to observe that, in a run of this
random process, we expect many nodes to end up with no incoming
links.

Give a formula for the expected number of nodes with no incoming
links in a network grown randomly according to this model.

Suggested solution

(a) For j, i ∈ [n] let Eji be the event that node vj has an incoming link
from vi and let Xji be the indicator random variable for this event.
Let Xj =

∑n
i=1Xji. Then Xj is a random variable whose value is the

number of incoming links to node vj.

For i ≤ j, P [Eji] = 0. For i > j, we have

P [Eji] =
1

i− 1
.

By linearity of expectation,

E[Xj] =
n∑

i=1

E[Xji]

=
n∑

i=j+1

1

i− 1

=
n−1∑
i=j

1

i

= Hn−1 −Hj−1

= θ(lnn)− θ(ln j)

= θ

(
ln

n

j

)
.

where Hn =
∑n

i=1
1
i
, denotes the n-th harmonic number.

(b) Node vj has no incoming arcs iff the event Eji occurs for every i ∈ [n].
Let Nj be the indicator random variable for this event. Using that

8

P [Eji] =
1

i−1
for i > j and P [Eji] = 0 for i ≤ j and that the events are

mutually independent we obtain

E[Nj] =
n∏

i=j+1

(
1− 1

i− 1

)

=
n−1∏
i=j

(
1− 1

i

)
=

(
j − 1

j

)(
j

j + 1

)
. . .

(
n− 2

n− 1

)
=

j − 1

n− 1

Now, letN =
∑n

j=1Nj. ThenN is a random variable whose value is the
number of nodes with no incoming links. By linearity of expectation

E[N] =
n∑

j=1

E[Nj]

=
n∑

j=1

j − 1

n− 1

=
1

n− 1

n∑
j=1

j − 1

=
1

n− 1

n(n− 1)

2

=
n

2
,

so we expect half the nodes to have no incoming link.

9

Exercise from course website

Exercise

In this problem, we consider an undirected graph G = (V,E) to model
the problem where there are small devices, each of which uses wireless
communication to communicate with d of the other nearby devices. The
vertices in V are the devices, and there are edges between vertices repre-
senting pairs of devices within communication range of each other. Thus,
each vertex has exactly d neighbors. Some of the devices should be given
an uplink transmitter so they can send data to the main station. We
want to use as few uplink transmitters as possible while still getting all
of the data from all of the devices. Thus, in our graph, we want a subset
S ⊆ V such that for all v ∈ V , either v ∈ S or v has a neighbor u such
that u ∈ S. Such a set S is called a dominating set. If the devices corre-
sponding to vertices in S all get uplink transmitters, then all devices can
either send data to the main station directly, or send data to a device
that can send data directly.

Finding a minimum-sized dominating set is an NP-hard problem (this
means that no sub-exponential algorithm is known), so one does not
expect to find a polynomial-time deterministic algorithm to solve it.

In this problem, consider a randomized algorithm that chooses a set
S of k = cn ln(n)

d+1
vertices from V uniformly at random. The constant c

will be discussed later. You should show through the following that S is
a dominating set with high probability.

In the following, assume that the vertices in S are chosen one at a
time and choosing the same vertex more than once is allowed. A vertex
v is said to dominate a vertex u if they are the same vertex or u is a
neighbor of v. A set S ′ dominates u if some vertex in S ′ dominates u.

1. What can you say about the minimum size a dominating set in G
must have?

2. Let D[v, t] be the event that the tth random vertex chosen domi-
nates v. Find the probability of D[v, t].

3. Let Dv be the event that S dominates v. What is the probability
of the complement of this event, Dv?

4. Show that
(
1
e

)c ln(n)
is an upper bound on the probability of Dv and

that
(
1
e

)c ln(n)
= 1

nc .

10

5. Let A be the event that S is a dominating set. Use the Union
Bound to give an upper bound on the probability of A.

6. Discuss what value c should have.

Suggested solution

1. Adding a vertex to S increases the number vertices dominated by S by
at most d+1. Thus, the minimum size of a dominating set is n/(d+1).

2. The t-th vertex chosen dominates v if it is v or a neighbor of v. There
are d+ 1 vertices that dominate v and each vertex is chosen uniformly
at random among all n vertices. Thus,

P [D[v, t]] =
d+ 1

n
.

3. We notice that Dv occurs iff D[v, t] for t = 1, 2, . . . , k.1 Thus,

P [Dv] =

(
1− d+ 1

n

)k

4. Rewriting the expression for P [Dv] from 4. we get

P [Dv] =

(
1− d+ 1

n

) cn ln(n)
d+1

=

((
1− d+ 1

n

) n
d+1

)c ln(n)

≤
(
1

e

)c ln(n)

=
1

ec ln(n)

=
1

nc

where we use the fact that (1− a−1)a ≤ 1/e for a ≥ 1.

1Suppose we round k up to the nearest integer

11

5. A occurs iff some vertex is not covered by S. Thus, A = ∪v∈VDv and
the Union Bound gives

P [A] ≤
∑
v∈V

P [Dv] ≤ n
1

nc
=

1

nc−1
.

6. If we want a non-zero probability of S being a dominating (and we
want to use the given bound to argue that this is the case) we must
pick c > 1. This gives P [A] < 1 and consequently P [A] > 0. One
might wish to pick c larger in order to increase the likelihood of success
at the expense of solution quality.

12

