
DM582 Exercises - Sheet 5

Mads Anker Nielsen Tobias Samsøe Sørensen

February 19, 2025

This document contains exercises from the course DM582 (spring 2025).
Most exercises are from the book Introduction to Algorithms, 4th edition
by Cormen, Leiserson, Rivest, and Stein (CLRS), the book Algorithm De-
sign, 1st edition by J. Kleinberg and E. Tardos (KT), and the book Discrete
Mathematics and its Applications, 8th edition by K. Rosen.

References to CLRS refer to the book Introduction to Algorithms, 4th
edition by Cormen, Leiserson, Rivest, and Stein.

References to KT refer to the book Algorithm Design, 1st edition by J.
Kleinberg and E. Tardos.

References to Rosen refer to the book Discrete Mathematics and its Ap-
plications, 8th edition by K. Rosen.

This document will inevitably contain mistakes. If you find some, please
report them to your TA so that we can correct them.

1

Sheet 5

KT, Exercise 6

Exercise

One of the (many) hard problems that arises in genome mapping can
be formulated in the following abstract way. We are given a set of n
markers {µ1, . . . , µn} — these are positions on a chromosome that we
are trying to map — and our goal is to output a linear ordering of these
markers. The output should be consistent with a set of constraints, each
specified by a triple (µi, µj, µk), requiring that µj lie between µi and µk

in the total ordering that we produce. (Note that this constraint does
not specify which of µi or µk should come first in the ordering, only that
µj should come between them.)

Now it is not always possible to satisfy all constraints simultaneously,
so we wish to produce an ordering that satisfies as many as possible.
Unfortunately, deciding whether there is an ordering that satisfies at
least k′ of the k constraints is an NP-complete problem (you don’t have
to prove this).

Give a constant α > 0 (independent of n) and an algorithm with the
following property. If it is possible to satisfy k∗ of the constraints, then
the algorithm produces an ordering of markers satisfying at least αk∗

of the constraints. Your algorithm may be randomized; in this case, it
should produce an ordering for which the expected number of satisfied
constraints is at least αk∗.

KT, Exercise 7

Exercise

In Section 13.4, we designed an approximation algorithm to within a
factor of 7/8 for the MAX 3-SAT Problem, where we assumed that each
clause has terms associated with three different variables. In this prob-
lem, we will consider the analogous MAX SAT Problem: Given a set of
clauses C1, ..., Ck over a set of variables X = {x1, . . . , xn},find a truth
assignment satisfying as many of the clauses as possible. Each clause
has at least one term in it, and all the variables in a single clause are
distinct, but otherwise we do not make any assumptions on the length
of the clauses: There may be clauses that have a lot of variables, and
others may have just a single variable.

2

(a) First consider the randomized approximation algorithm we used
for MAX 3-SAT, setting each variable independently to true or
false with probability 1/2 each. Show that the expected number
of clauses satisfied by this random assignment is at least k/2, that
is, at least half of the clauses are satisfied in expectation. Give an
example to show that there are MAX SAT instances such that no
assignment satisfies more than half of the clauses.

(b) If we have a clause that consists only of a single term (e.g., a clause
consisting just of x1, or just of x2), then there is only a single way
to satisfy it: We need to set the corresponding variable in the
appropriate way. If we have two clauses such that one consists
of just the term xi, and the other consists of just the negated
term xi, then this is a pretty direct contradiction. Assume that
our instance has no such pair of “conflicting clauses”; that is, for
no variable xi do we have both a clause C = {xi} and a clause
C = {xi}. Modify the randomized procedure above to improve the
approximation factor from 1/2 to at least .6. That is, change the
algorithm so that the expected number of clauses satisfied by the
process is at least .6k.

(c) Give a randomized polynomial-time algorithm for the general MAX
SAT Problem, so that the expected number of clauses satisfied by
the algorithm is at least a .6 fraction of the maximum possible.

Exercise from course webpage

Exercise

This problem concerns a randomized algorithm for coloring graphs. As-
sume we have a graph, G = (V,E), and colors, {1, 2, 3, 4}. Then f : V →
{1, 2, 3, 4} is called a 4-coloring of G. We say that an edge uv ∈ E is
good with respect to f if f(u) ̸= f(v).

1. Suppose that each vertex independently gets color i with proba-
bility 1/4 for i ∈ {1, 2, 3, 4}. Let the random variable X be the
number of edges in E that are good with respect to the coloring f .
Show that E[X] = 3|E|

4
.

2. Use the result above and the probabilistic method to conclude that
every graph has a 4-coloring f such that at least 3|E|

4
of its edges

3

are good with respect to f .

3. Define a randomized algorithm that, for a given graph G = (V,E),

finds a 4-coloring f ∗ of V such that at least 3|E|
4

of the edges of G
are good with respect to f ∗.

4. Follow the construction from MAX 3-SAT to compute a bound on
the expected running time of your algorithm?

KT, Exercise 2

Exercise

Revisit this exercise to also find some upper bound on the probability of
at least 1000 Democrats voting for the R candidate.

KT, Exercise 8

Exercise

Let G = (V,E) be an undirected graph with n nodes and m edges. For
a subset X ⊆ V , we use G[X] to denote the subgraph induced on X —
that is, the graph whose node set is X and whose edge set consists of all
edges of G for which both ends lie in X.

We are given a natural number k ≤ n and are interested in finding
a set of k nodes that induces a “dense” subgraph of G; we’ll phrase this
concretely as follows. Give a polynomial-time algorithm that produces,
for a given natural number k ≤ n, a set X ⊆ V of k nodes with the
property that the induced subgraph G[X] has at least mk(k−1)

n(n−1)
edges.

You may give either (a) a deterministic algorithm, or (b) a randomized
algorithm that has an expected running time that is polynomial, and
that only outputs correct answers.

Exercise from course webpage

Exercise

For a graph, G = (V,E), a spanning bipartite subgraph G′ of G is defined
by a partition (V1, V2) of V , and the edges E ′ ⊆ E that have an endpoint
in both parts.

4

Consider the following randomized algorithm for finding a spanning
bipartite subgraph of an arbitrary graph: Independently, for each vertex
v ∈ V , decide uniformly at random if vertex v is in V1 or V2.

1. Give a lower bound on the expected number of edges m′ in E ′ as
a function of m = |E|.

2. How can you use your result to conclude that any graph has a
spanning bipartite subgraph with m′ ≥ m/2?

3. Design a deterministic, polynomial-time algorithm for this prob-
lem, finding a spanning bipartite subgraph G′ of any graph G,
where m′ ≥ m/2.

5

