
DM582 Exercises - Sheet 5

Mads Anker Nielsen Tobias Samsøe Sørensen

March 5, 2025

This document contains exercises from the course DM582 (spring 2025).
Most exercises are from the book Introduction to Algorithms, 4th edition
by Cormen, Leiserson, Rivest, and Stein (CLRS), the book Algorithm De-
sign, 1st edition by J. Kleinberg and E. Tardos (KT), and the book Discrete
Mathematics and its Applications, 8th edition by K. Rosen.

The solutions given here might differ from the solutions discussed in class.
In class, we place more emphasis on the intuition leading to the correct
answer. Please do not consider reading these solutions an alternative to
attending the exercise classes.

References to CLRS refer to the book Introduction to Algorithms, 4th
edition by Cormen, Leiserson, Rivest, and Stein.

References to KT refer to the book Algorithm Design, 1st edition by J.
Kleinberg and E. Tardos.

References to Rosen refer to the book Discrete Mathematics and its Ap-
plications, 8th edition by K. Rosen.

This document will inevitably contain mistakes. If you find some, please
report them to your TA so that we can correct them.

1



Sheet 5

KT, Exercise 6

Exercise

One of the (many) hard problems that arises in genome mapping can
be formulated in the following abstract way. We are given a set of n
markers {µ1, . . . , µn} — these are positions on a chromosome that we
are trying to map — and our goal is to output a linear ordering of these
markers. The output should be consistent with a set of constraints, each
specified by a triple (µi, µj, µk), requiring that µj lie between µi and µk

in the total ordering that we produce. (Note that this constraint does
not specify which of µi or µk should come first in the ordering, only that
µj should come between them.)

Now it is not always possible to satisfy all constraints simultaneously,
so we wish to produce an ordering that satisfies as many as possible.
Unfortunately, deciding whether there is an ordering that satisfies at
least k′ of the k constraints is an NP-complete problem (you don’t have
to prove this).

Give a constant α > 0 (independent of n) and an algorithm with the
following property. If it is possible to satisfy k∗ of the constraints, then
the algorithm produces an ordering of markers satisfying at least αk∗

of the constraints. Your algorithm may be randomized; in this case, it
should produce an ordering for which the expected number of satisfied
constraints is at least αk∗.

Suggested solution
We give an algorithm which satisfies 1

3
k constraints in expectation. The al-

gorithm is very simple: simply output a random permutation of the markers.
We show that this indeed results in satisfying a third of the constraints in
expectation.

For i ∈ [k] let Xi be an indicator random variable for the event that the
i-th constraint is satisfied. Then X =

∑k
i=1Xi is a random variable whose

value is the number of constraints satisfied. Now,

E[Xi] = P [i-th constraint satisfied] =
1

3

since all relative orders of the three markers are equally likely. By linearity
of expectation

E[X] =
k∑

i=1

E[Xi] =
1

3
k

2



which is what we wanted to show.

3



KT, Exercise 7

Exercise

In Section 13.4, we designed an approximation algorithm to within a
factor of 7/8 for the MAX 3-SAT Problem, where we assumed that each
clause has terms associated with three different variables. In this prob-
lem, we will consider the analogous MAX SAT Problem: Given a set of
clauses C1, ..., Ck over a set of variables X = {x1, . . . , xn},find a truth
assignment satisfying as many of the clauses as possible. Each clause
has at least one term in it, and all the variables in a single clause are
distinct, but otherwise we do not make any assumptions on the length
of the clauses: There may be clauses that have a lot of variables, and
others may have just a single variable.

(a) First consider the randomized approximation algorithm we used
for MAX 3-SAT, setting each variable independently to true or
false with probability 1/2 each. Show that the expected number
of clauses satisfied by this random assignment is at least k/2, that
is, at least half of the clauses are satisfied in expectation. Give an
example to show that there are MAX SAT instances such that no
assignment satisfies more than half of the clauses.

(b) If we have a clause that consists only of a single term (e.g., a clause
consisting just of x1, or just of x2), then there is only a single way
to satisfy it: We need to set the corresponding variable in the
appropriate way. If we have two clauses such that one consists
of just the term xi, and the other consists of just the negated
term xi, then this is a pretty direct contradiction. Assume that
our instance has no such pair of “conflicting clauses”; that is, for
no variable xi do we have both a clause C = {xi} and a clause
C = {xi}. Modify the randomized procedure above to improve the
approximation factor from 1/2 to at least .6. That is, change the
algorithm so that the expected number of clauses satisfied by the
process is at least .6k.

(c) Give a randomized polynomial-time algorithm for the general MAX
SAT Problem, so that the expected number of clauses satisfied by
the algorithm is at least a .6 fraction of the maximum possible.

Suggested solution

4



(a) LetXi be an indicator random variable for the event that Ci is satisfied.
Then X =

∑n
i=1 Xi is a random variable whose values is the number of

satisfied clauses. A clause with l literals is false iff all literals are false,
and each literal is set to false independently and with probability 1/2.
Hence, the probability that a clause is false is (1/2)l which is at most
1/2 when l ≥ 1. Thus,

E[Xi] ≥
(
1− 1

2

)
=

1

2
.

By linearity of expectation

E[X] =
k∑

i=1

E[Xi] ≥
1

2
k

which is what we wanted.

The instance x1 ∧ x1 shows that this bound is tight. That is, no algo-
rithm can guarantee satisfaction of more than half of the clauses in the
general case.

(b) We modify the algorithm by increasing the probability of satisfying
clauses with a single literal. If xi (xi) is a literal of a single clause, we
set xi to true (false) with probability 6/10 such that the probability
of satisfying the clause is 6/10. This is well-defined since we have no
contradictory single clauses. If a literal does not occur in a single clause,
we set it to true with probability 1

2
and false with probability 1

2
.

Again, let Xi be an indicator random variable for the event that Ci is
satisfied. Then we have E[Xi] =

6
10

= 0.6 if Ci contains a single literal

and E[Xi] ≥ 1−
(

6
10

)l
> 0.6 for clauses with l ≥ 2 literals. Hence, we

have E(X) =
∑k

i=1E(Xi) ≥ 0.6k as desired.

Note: the choice of 0.6 is somewhat arbitrary. The same anal-
ysis works if we replace 0.6 by ϕ − 1 ≈ 0.618 where ϕ is the
golden ratio.

(c) We start by modifying the SAT instance in the following way. For each
single literal clause C = {xi}, if the clause C ′ = {xi} also occurs in
the SAT instance, remove C ′. Suppose there are k′ clauses left after
removing such clauses. Now, apply the algorithm above. This gives an
assignment which satisfies at least 0.6k′ clauses in expectation. Since
it is not possible to satisfy more than k′ clauses, we have that the
expected number of clauses satisfied by the algorithm is at least a 0.6
fraction of the maximum possible.

5



Exercise from course webpage

Exercise

This problem concerns a randomized algorithm for coloring graphs. As-
sume we have a graph, G = (V,E), and colors, {1, 2, 3, 4}. Then f : V →
{1, 2, 3, 4} is called a 4-coloring of G. We say that an edge uv ∈ E is
good with respect to f if f(u) ̸= f(v).

1. Suppose that each vertex independently gets color i with proba-
bility 1/4 for i ∈ {1, 2, 3, 4}. Let the random variable X be the
number of edges in E that are good with respect to the coloring f .
Show that E[X] = 3|E|

4
.

2. Use the result above and the probabilistic method to conclude that
every graph has a 4-coloring f such that at least 3|E|

4
of its edges

are good with respect to f .

3. Define a randomized algorithm that, for a given graph G = (V,E),

finds a 4-coloring f ∗ of V such that at least 3|E|
4

of the edges of G
are good with respect to f ∗.

4. Follow the construction from MAX 3-SAT to compute a bound on
the expected running time of your algorithm?

Suggested solution

1. For e ∈ E let Xe be an indicator random variable for the event that
e is good. Now X =

∑
e∈E Xe. For any uv ∈ E, uv is good iff u is

assigned a color different from f(v), which occurs with probability 3
4
.

Thus

E[Xe] =
3

4

for any e ∈ E and by linearity of expectation

E[X] =
∑
e∈E

3

4
=

3

4
|E|

as desired.

2. In general, for a sample space S and random variable X : S → R
there must be some outcome s ∈ S such that X(s) ≥ E[X]. We give
a short proof by contradiction. Let S be any sample space and let

6



X be a random variable on S. Suppose there is no s ∈ S such that
X(s) ≥ E[X] (i.e. X(s) < E[X] for all s ∈ S). By the definition of
expectation

E[X] =
∑
s∈S

X(s)P [s]

<
∑
s∈S

E[X]P [s]

= E[X]
∑
s∈S

P [s]

= E[X],

so E[X] < E[X] which is a contradiction.

The claim from the task follows since E[X] = 3
4
|E| and thus there

exists some outcome f (a particular 4-coloring from the sample space
of all possible 4-colorings) such that X(f) (the number of good edges
wrt. f) is at least 3

4
|E|.

3. We simply generate random colorings until we find a coloring f ∗ such
that at least 3

4
|E| edges are good wrt. f ∗.

4. Let f be a random coloring and let p denote the probability that at
least 3

4
edges are good wrt. f . We obtain a lower bound on p.

Again, let X be a random variable whose value is the number of good
edges. From part 3. we know that E[X] = 3

4
|E|. Now, by the definition

of expectation

3

4
|E| = E[X] =

|E|∑
i=0

iP [X = i].

Let c be the largest natural number which is strictly smaller that 3
4
|E|.

That is, c is the largest number of edges that can be good without 3
4
|E|

edges being good.

Our goal is to bound p =
∑|E|

i=c+1 P [X = i] from below using the above

7



equality. We see that

3

4
|E| =

|E|∑
i=0

iP [X = i]

=
c∑

i=0

iP [X = i] +

|E|∑
i=c+1

iP [X = i]

≤
c∑

i=0

cP [X = i] +

|E|∑
i=c+1

|E|P [X = i]

= c
c∑

i=0

P [X = i] + |E|
|E|∑

i=c+1

P [X = i]

= c(1− p) + |E|p
≤ c+ |E|p

so |E|p ≥ 3
4
|E| − c ≥ 1

4
by the choice of c and thus p ≥ 1

4|E| .

Thus, the expected number of trails until we find a coloring satisfying
at least 3

4
|E| edges is 4|E|.

Note. You can think of the fact that 3
4
|E| − c ≥ 1

4
as follows: if

3|E| happens to be divisible by 4, then 3
4
|E| − c = 1, and if 3|E|

is not divisible by 4, it is at least 1 above a multiple of 4 and
thus 1

4
3|E| − c ≥ 1

4
.

8



KT, Exercise 2

Exercise

Revisit this exercise to also find some upper bound on the probability of
at least 1000 Democrats voting for the R candidate.

Suggested solution
LetX be the number of Democrats voting for the R candidate (X is a random
variable). We know from previously that E[X] = 1

100
· 80000 = 800. Now, by

the definition of expectation

800 = E[X] =
80000∑
i=0

iP [X = i]

=
999∑
i=0

iP [X = i] +
80000∑
i=1000

iP [X = i]

≥
80000∑
i=1000

iP [X = i]

≥ 1000
80000∑
i=1000

P [X = i]

= 1000P [X ≥ 1000]

which implies P [X ≥ 1000] ≤ 800
1000

= 4
5
.

One can generalize the above derivation to obtain that P [X ≥ a] ≤ E[X]
a

for any positive real a and any non-negative random variable X. This is
known as Markov’s inequality.

9



KT, Exercise 8

Exercise

Let G = (V,E) be an undirected graph with n nodes and m edges. For
a subset X ⊆ V , we use G[X] to denote the subgraph induced on X —
that is, the graph whose node set is X and whose edge set consists of all
edges of G for which both ends lie in X.

We are given a natural number k ≤ n and are interested in finding
a set of k nodes that induces a “dense” subgraph of G; we’ll phrase this
concretely as follows. Give a polynomial-time algorithm that produces,
for a given natural number k ≤ n, a set X ⊆ V of k nodes with the
property that the induced subgraph G[X] has at least mk(k−1)

n(n−1)
edges.

You may give either (a) a deterministic algorithm, or (b) a randomized
algorithm that has an expected running time that is polynomial, and
that only outputs correct answers.

Suggested solution
We give a very simple randomized algorithm: pick a set X of k vertices
uniformly at random among all k-subsets of V until we obtain a set X such
that G[X] has at least k(k−1)

n(n−1)
m edges. Call X ⊆ V with |X| = k good if

G[X] contains at least k(k−1)
n(n−1)

m edges.

We start by showing that the expected number of edges in G[X] is
k(k−1)
n(n−1)

m. Using this, we derive a lower bound on the probability that X
is good.

For e ∈ E let Ie be an indicator random variable for the event that e ∈
E(G[X]). Then I =

∑
e∈E Ie is a random variable whose value is the number

of edges in G[X]. Now, E[Iuv] = P [uv ∈ E(G[X])] = P [u ∈ X and v ∈ X] =
k(k−1)
n(n−1)

and by linearity of expectation

E[I] =
∑
e∈E

E[Ie] =
k(k − 1)

n(n− 1)
m.

Let p be the probability that X is good. And let c be the largest natural
number which is strictly smaller that k(k−1)

n(n−1)
m. That is, c is the largest number

of edges that can be in G[X] without X being good. We also observe that
I ≤

(
k
2

)
since G[X] contains k vertices. We now obtain a lower bound on p.

10



We see that

E[I] =
k(k − 1)

n(n− 1)
m =

m∑
i=0

iP [I = i]

=

(k2)∑
i=0

iP [I = i]

=
c∑

i=0

iP [I = i] +

(k2)∑
i=c+1

iP [I = i]

≤
c∑

i=0

cP [I = i] +

(k2)∑
i=c+1

(
k

2

)
P [I = i]

= c(1− p) +

(
k

2

)
p

≤ c+

(
k

2

)
p

so
(
k
2

)
p ≥ k(k−1)

n(n−1)
m − c ≥ 1

n(n−1)
. Thus, p ≥ 2

k(k−1)n(n−1)
which yields an

expected running time of k(k−1)n(n−1)
2

∈ O((kn)2).

11


