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This document contains exercises from the course DM582 (spring 2025).
Most exercises are from the book Introduction to Algorithms, 4th edition
by Cormen, Leiserson, Rivest, and Stein (CLRS), the book Algorithm De-
sign, 1st edition by J. Kleinberg and E. Tardos (KT), and the book Discrete
Mathematics and its Applications, 8th edition by K. Rosen.

References to CLRS refer to the book Introduction to Algorithms, 4th
edition by Cormen, Leiserson, Rivest, and Stein.

References to KT refer to the book Algorithm Design, 1st edition by J.
Kleinberg and E. Tardos.

References to Rosen refer to the book Discrete Mathematics and its Ap-
plications, 8th edition by K. Rosen.

This document will inevitably contain mistakes. If you find some, please
report them to your TA so that we can correct them.
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Sheet 6

CLRS, 7.4-5

Exercise

Coarsening the recursion, as we did in Problem 2-1 for merge sort, is
a common way to improve the running time of quicksort in practice.
We modify the base case of the recursion so that if the array has fewer
than k elements, the subarray is sorted by insertion sort, rather than
by continued recursive calls to quicksort. Argue that the randomized
version of this sorting algorithm runs in O(nk + n log(n/k)) expected
time. How should you pick k, both in theory and in practice?

CLRS, 7-1 (a-b)

Exercise

The version of PARTITION given in this chapter is not the original
partitioning algorithm. Here is the original partitioning algorithm, which
is due to C. A. R. Hoare.

a. Demonstrate the operation of HOARE-PARTITION on the ar-
ray A = ⟨13, 19, 9, 5, 12, 8, 7, 4, 11, 2, 6, 21⟩, showing the values of
the array and the indices i and j after each iteration of the while
loop.

2



b. Describe how the PARTITION procedure in Section 7.1 differs
from HOARE-PARTITION when all elements in A[p : r] are
equal. Describe a practical advantage of HOARE-PARTITION
over PARTITION for use in quicksort.

CLRS, Problem 7-2

Exercise

The analysis of the expected running time of randomized quicksort in
Section 7.4.2 assumes that all element values are distinct. This problem
examines what happens when they are not.

a. Suppose that all element values are equal. What is randomized
quicksort’s running time in this case?

b. The PARTITION procedure returns an index q such that each ele-
ment of A[p : q − 1] is less than or equal to A[q] and each element
of A[q + 1 : r] is greater than A[q]. Modify the PARTITION proce-
dure to produce a procedure PARTITION’ (A, p, r), which permutes
the elements of A[p : r] and returns two indices q and t, where
p ≤ q ≤ t ≤ r, such that

• all elements of A[q : t] are equal,

• each element of A[p : q − 1] is less than A[q], and

• each element of A[t+ 1 : r] is greater than A[q].

Like PARTITION, your PARTITION’ procedure should take O(r− p)
time.

c. Modify the RANDOMIZED-PARTITION procedure to call PARTITION’,
and name the new procedure RANDOMIZED-PARTITION’. Then mod-
ify the QUICKSORT procedure to produce a procedure QUICKSORT’(A, p, r)
that calls RANDOMIZED-PARTITION’ and recurses only on partitions
where elements are not known to be equal to each other.

d. Using QUICKSORT’, adjust the analysis in Section 7.4.2 to avoid the
assumption that all elements are distinct.

CLRS, Problem 7-4
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Exercise

Professors Howard, Fine, and Howard have proposed a deceptively simple
sorting algorithm, named stooge-sort in their honor, appearing on the
following page.

a. Argue that the call STOOGE-SORT(A, 1, n) correctly sorts the ar-
ray A[1 : n].

b. Give a recurrence for the worst-case running time of STOOGE-SORT
and a tight asymptotic (Θ-notation) bound on the worst-case run-
ning time.

c. Compare the worst-case running time of STOOGE-SORT with that of
insertion sort, merge sort, heapsort, and quicksort. Do the profes-
sors deserve tenure?

CLRS, 9.2-1

Exercise

Show that RANDOMIZED-SELECT never makes a recursive call to a 0-length
array.

CLRS, Problem 9-1

Exercise

You are given a set of n numbers, and you wish to find the i largest in
sorted order using a comparison-based algorithm. Describe the algorithm
that implements each of the following methods with the best asymptotic
worst-case running time, and analyze the running times of the algorithms
in terms of n and i.

4



1. Sort the numbers, and list the i largest.

2. Build a max-priority queue from the numbers, and call EXTRACT-MAX
i times.

3. Use an order-statistic algorithm to find the i-th largest number,
partition around that number, and sort the i largest numbers.

Exercise from course webpage

Exercise

Assume that for an oral exam, there are k questions that students can
draw from. Kim The hypothetical lecturer finds it tiring to hear the
same topic several times, so when a student draws a question, he doesn’t
put it back again for the next student. Thus, when the first student in
the exam sequence draws, there are k questions laid out on the table,
when the second student draws, there are only k − 1 questions on the
table, etc. The ith student sees a table with k− i+1 questions. At some
point, the lecturer restarts the process with all k questions.

The students employ different algorithms for selecting; some try to
choose uniformly at random, some take the nearest, some the one furthest
away, etc. The lecturer, on the other hand, places the questions in an
order chosen uniformly at random, and either does not change the order
in between questions disappearing, or sometimes collects all the questions
currently on the table and places them uniformly at random again.

Are the students treated fairly in the sense that the ith student gets
any of the questions with probability 1/k, i.e., independent of the per-
son’s placement in the exam sequence?
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