
DM582 Exercises - Sheet 6

Mads Anker Nielsen Tobias Samsøe Sørensen

March 26, 2025

This document contains exercises from the course DM582 (spring 2025).
Most exercises are from the book Introduction to Algorithms, 4th edition
by Cormen, Leiserson, Rivest, and Stein (CLRS), the book Algorithm De-
sign, 1st edition by J. Kleinberg and E. Tardos (KT), and the book Discrete
Mathematics and its Applications, 8th edition by K. Rosen.

The solutions given here might differ from the solutions discussed in class.
In class, we place more emphasis on the intuition leading to the correct
answer. Please do not consider reading these solutions an alternative to
attending the exercise classes.

References to CLRS refer to the book Introduction to Algorithms, 4th
edition by Cormen, Leiserson, Rivest, and Stein.

References to KT refer to the book Algorithm Design, 1st edition by J.
Kleinberg and E. Tardos.

References to Rosen refer to the book Discrete Mathematics and its Ap-
plications, 8th edition by K. Rosen.

This document will inevitably contain mistakes. If you find some, please
report them to your TA so that we can correct them.

1



Sheet 6

CLRS, 7.4-5

Exercise

Coarsening the recursion, as we did in Problem 2-1 for merge sort, is
a common way to improve the running time of quicksort in practice.
We modify the base case of the recursion so that if the array has fewer
than k elements, the subarray is sorted by insertion sort, rather than
by continued recursive calls to quicksort. Argue that the randomized
version of this sorting algorithm runs in O(nk + n log(n/k)) expected
time. How should you pick k, both in theory and in practice?

Suggested solution
Loosely, if quicksort stops when reaching subarrays of size k, then the ex-
pected depth of the recursion tree is log n/k, and thus we get and expected
running time of O(n log n/k). Insertion sort is run on the n/k unsorted
subarrays of size k. Since insertion sort runs in time O(k2) on an array of
size k, the total contribution to the running time from the calls to inser-
tion sort is O(n/k · k2) = O(nk). In conclusion, the total running time in
O(nk + n log n/k).

Say the actual running time of the algorithm is f(n, k) = nk ·n log2(n/k)).
In theory, we should pick k such that f(n, k) is minimized by solving d

dk
f(n, k) =

0 for k. In practice, this would probably not be a feasible approach as it re-
quires knowing the exact runtime of the algorithm as a function of k and n.
Instead, we are better off determining k experimentally to account for factors
such as cache size, memory access times, memory handling by the operating
system and hardware, etc. which are hard if not impossible to determine
analytically.

2



CLRS, 7-1 (a-b)

Exercise

The version of PARTITION given in this chapter is not the original
partitioning algorithm. Here is the original partitioning algorithm, which
is due to C. A. R. Hoare.

a. Demonstrate the operation of HOARE-PARTITION on the ar-
ray A = ⟨13, 19, 9, 5, 12, 8, 7, 4, 11, 2, 6, 21⟩, showing the values of
the array and the indices i and j after each iteration of the while
loop.

b. Describe how the PARTITION procedure in Section 7.1 differs
from HOARE-PARTITION when all elements in A[p : r] are
equal. Describe a practical advantage of HOARE-PARTITION
over PARTITION for use in quicksort.

Suggested solution

a. See figure 1.

b. The PARTITION procedure in Section 7.1 results in an unbalanced
partition with all elements on the low side when the elements in A[p :
r] are equal. This invokes the worst-case running time of quicksort
of Θ(n2) where n is the length of the subararay. The HOARE-
PARTITION procedure, on the other hand, results in a balanced
partition in this case.

3



Figure 1

4



CLRS, Problem 7-2

Exercise

The analysis of the expected running time of randomized quicksort in
Section 7.4.2 assumes that all element values are distinct. This problem
examines what happens when they are not.

a. Suppose that all element values are equal. What is randomized
quicksort’s running time in this case?

b. The PARTITION procedure returns an index q such that each ele-
ment of A[p : q − 1] is less than or equal to A[q] and each element
of A[q + 1 : r] is greater than A[q]. Modify the PARTITION proce-
dure to produce a procedure PARTITION’ (A, p, r), which permutes
the elements of A[p : r] and returns two indices q and t, where
p ≤ q ≤ t ≤ r, such that

• all elements of A[q : t] are equal,

• each element of A[p : q − 1] is less than A[q], and

• each element of A[t+ 1 : r] is greater than A[q].

Like PARTITION, your PARTITION’ procedure should take O(r− p)
time.

c. Modify the RANDOMIZED-PARTITION procedure to call PARTITION’,
and name the new procedure RANDOMIZED-PARTITION’. Then mod-
ify the QUICKSORT procedure to produce a procedure QUICKSORT’(A, p, r)
that calls RANDOMIZED-PARTITION’ and recurses only on partitions
where elements are not known to be equal to each other.

d. Using QUICKSORT’, adjust the analysis in Section 7.4.2 to avoid the
assumption that all elements are distinct.

Suggested solution

a. The random swapping operation that distinguishes randomized quick-
sort from the deterministic version does not change the array. Thus,
the algorithm reduces to the deterministic version, which has a running
time of Θ(n2) when all elements are equal.

b. There are many ways to accomplish this. Below is one suggestion.

5



1 x = A[r]

2 q = t = p− 1

3 for j = p to r − 1

4 y = A[j]

5 if y ≤ x

6 t = t+ 1

7 swap A[t] and A[j]

8 if y < x

9 q = q + 1

10 swap A[q] and A[t]

11 swap A[t+ 1] and A[r]

12 return (q + 1, t+ 1)

c. See Figure 2.

Figure 2

d. In the proof of lemma 7.2, we use that if the pivot x chosen in the set
Zi,j is not zi nor zj, then zj < x < zi and thus zj and zi end up in
different parts of the partition and are thus never compared. For the
modified algorithm QUICKSORT’, this assertion is still true even if we
only assume zj ≤ x ≤ zi; if either inequality holds with equality, say

6



zj = x, then we do not recurse on a subarray containing zj, and thus
zj is never compared to zi (similarly if zi = x or both).

Thus, Lemma 7.2 still holds and the rest of the analysis is identical
except we replace z1 < z2 < · · · < zn with z1 ≤ z2 ≤ · · · ≤ zn in the
proofs of Lemma 7.3 and Theorem 7.4.1

1We are technically comparing the pivot with each element in the subarray twice in the
implementation of PARTITION’ given here, but this makes no difference to the asymptotic
runtime.

7



CLRS, Problem 7-4

Exercise

Professors Howard, Fine, and Howard have proposed a deceptively simple
sorting algorithm, named stooge-sort in their honor, appearing on the
following page.

a. Argue that the call STOOGE-SORT(A, 1, n) correctly sorts the ar-
ray A[1 : n].

b. Give a recurrence for the worst-case running time of STOOGE-SORT
and a tight asymptotic (Θ-notation) bound on the worst-case run-
ning time.

c. Compare the worst-case running time of STOOGE-SORT with that of
insertion sort, merge sort, heapsort, and quicksort. Do the profes-
sors deserve tenure?

Suggested solution

a. We argue (semi-formally) by induction on the length of the subarray
A[p : r] which we denote n. For the sake of simplicity, assume that the
elements of the array are distinct.

For n ≤ 2 the algorithm correctly sorts the array in the first if statement
and terminates.

Suppose n ≥ 3 and let k = ⌊(r − p + 1)/3⌋. All recursive calls are
on subarrays with fewer elements, and thus the subarrays are correctly
sorted by the induction hypothesis. Suppose some element x is among
the largest k elements of the subarray A[p : r]. Then x is also among
the largest k elements of the subarray A[p : r − k]. Thus, after sorting
A[p, r − k], x is in the subarray A[p + k : r]. Hence, when A[p + k : r]
is sorted, x is among the last k element of A[p : r]. Since this holds
for any x among the largest k elements of A[p : r], we conclude that

8



the last k elements of A[p : r] are the k largest elements of A[p : r] in
sorted order. Thus, sorting A[p, r− k] after the first two recursive calls
completely sorts the array.

b. The algorithm perform a constant amount of work and 3 recursive calls
on subarrays of size 2/3n (ignoring the rounding). Thus,

T (n) = 3T ((2/3)n) + c

describes the running time of the algorithm where c is a constant.
This can be solved using the master theorem. Case 1 applies and thus
T (n) ∈ Θ(nlog3/2 3). Note that log3/2 3 ≈ 2.7.

c. All of these algorithms have worst-case running time at most O(n2).
The professors might deserve tenure, but probably not because of this
algorithm.

9



CLRS, 9.2-1

Exercise

Show that RANDOMIZED-SELECT never makes a recursive call to a 0-length
array.

Suggested solution
Suppose we make a recursive call to a 0-length array. We show that the
condition 1 ≤ i ≤ r − p + 1 is violated. If the call to a 0-length subarray
happens on line 8, then we must have q = p and i < k. But k = q−p+1 = 1
and thus i < 1; a contradiction. Thus, the recursive call to a 0-length array
must occur on line 9. Then we must have q = r and i > k. But k = r− p+1
and thus i > r − p+ 1; a contradiction.

10



CLRS, Problem 9-1

Exercise

You are given a set of n numbers, and you wish to find the i largest in
sorted order using a comparison-based algorithm. Describe the algorithm
that implements each of the following methods with the best asymptotic
worst-case running time, and analyze the running times of the algorithms
in terms of n and i.

1. Sort the numbers, and list the i largest.

2. Build a max-priority queue from the numbers, and call EXTRACT-MAX
i times.

3. Use an order-statistic algorithm to find the i-th largest number,
partition around that number, and sort the i largest numbers.

Suggested solution
Using Merge-Sort guarantees a running time of Θ(n log n) for this approach.

The Build-Max-Heap procedure runs in time Θ(n) and the Max-Heap-Extract
in time Θ(log n) time. We need to call Build-Max-Heap once and Max-Heap-Extract
i times, so the total running time of this approach is Θ(n+ i log n).

Using Randomized-Select for finding the i-th largest element and Merge-Sort
for sorting, the running time of this approach is Θ(n+i log i) in expectation.

11



Exercise from course webpage

Exercise

Assume that for an oral exam, there are k questions that students can
draw from. Kim The hypothetical lecturer finds it tiring to hear the
same topic several times, so when a student draws a question, he doesn’t
put it back again for the next student. Thus, when the first student in
the exam sequence draws, there are k questions laid out on the table,
when the second student draws, there are only k − 1 questions on the
table, etc. The ith student sees a table with k− i+1 questions. At some
point, the lecturer restarts the process with all k questions.

The students employ different algorithms for selecting; some try to
choose uniformly at random, some take the nearest, some the one furthest
away, etc. The lecturer, on the other hand, places the questions in an
order chosen uniformly at random, and either does not change the order
in between questions disappearing, or sometimes collects all the questions
currently on the table and places them uniformly at random again.

Are the students treated fairly in the sense that the ith student gets
any of the questions with probability 1/k, i.e., independent of the per-
son’s placement in the exam sequence?

Suggested solution
Yes. First, observe that when the lecturer restarts the process, then the first
student after the restart sees a random permutation of all k questions, and
thus gets any particular question with probability 1/k (regardless of their
strategy).

The probability that a particular question x is left on the table when the
i-th student draws is the probability that none of the first i − 1 students
drew question x. Since each student draws a question independently and
uniformly at random, this probability is

k − 1

k

k − 2

k − 1
· · · k − i+ 1

k − i+ 2
=

k − i+ 1

k
.

Since student i draws uniformly at random from the set of k− i+1 questions
that are left, the probability that question x is drawn is

1

k − i+ 1

k − i+ 1

k
=

1

k
.

12


