
DM582 Exercises - Sheet 7

Mads Anker Nielsen Tobias Samsøe Sørensen

March 26, 2025

This document contains exercises from the course DM582 (spring 2025).
Most exercises are from the book Introduction to Algorithms, 4th edition
by Cormen, Leiserson, Rivest, and Stein (CLRS), the book Algorithm De-
sign, 1st edition by J. Kleinberg and E. Tardos (KT), and the book Discrete
Mathematics and its Applications, 8th edition by K. Rosen.

The solutions given here might differ from the solutions discussed in class.
In class, we place more emphasis on the intuition leading to the correct
answer. Please do not consider reading these solutions an alternative to
attending the exercise classes.

References to CLRS refer to the book Introduction to Algorithms, 4th
edition by Cormen, Leiserson, Rivest, and Stein.

References to KT refer to the book Algorithm Design, 1st edition by J.
Kleinberg and E. Tardos.

References to Rosen refer to the book Discrete Mathematics and its Ap-
plications, 8th edition by K. Rosen.

This document will inevitably contain mistakes. If you find some, please
report them to your TA so that we can correct them.

1

Sheet 6

Exercise 16.1-2

Exercise

Show that if a DECREMENT operation is included in the bit counter exam-
ple, operations can cost as much as Θ(nk) time.

Suggested solution
Let A[k − 1] = 1 and A[i] = 0 for i = 0, 1, . . . , k − 2. That is, the
value of the counter is 2k−1. Now, consider the sequence of operations
σ = ⟨DECREMENT, INCREMENT⟩n of length 2n. The first pair of a DECREMENT

and an INCREMENT operation will flip all bits (twice) and return the counter
to its original value. This process repeats n times. Thus, the total running
time is Θ(2nk).

2

Exercise 16.3-2

Exercise

Redo Exercise 16.1-3 using a potential method of analysis.

Exercise 16.1-3: Use aggregate analysis to determine the amortized
cost per operation for a sequence of operations on a data structure in
which the i-th operation costs i if is an exact power of 2, and 1 otherwise.

Suggested solution
Note: Since this is the first exercise in which we use the potential method, we
give an explanation which is much more verbose than needed in general. All
we need in general is to define a potential function Φ, show that Φ0 ≤ Φn for
all n ≥ 0 (we usually take Φ0 = 0), and then determine the amortized cost
of the i-th operation to obtain the desired result.

It seems reasonable to guess that the amortized cost of n operations is
O(n) since, intuitively, most operations have constant cost while the costly
operations are rare. We now try to prove this.

First, let us informally consider what we need the potential function to
be. If we want the amortized cost of n operations to be O(n), we need the
amortized cost of each operation to be O(1). When i is a power of 2, the cost
ci of the operation is i, so we need the potential function to change by −i
(possibly plus some constant) in order to the amortized cost to be constant.
When i is not a power of 2, the cost ci of the operation is 1, so we really don’t
need the potential function to change at all in order for the amortized cost to
be constant. However, if we do not increase the potential, we cannot make
the potential drop by i when i is a power of 2 without the potential becoming
negative.1 Thus, we need the potential function to increase. However, we
cannot increase the potential function by more than a constant if we want
the amortized cost to be constant.

With this in mind, we come up with the potential function Φ0 = 0 and
Φi = 2(i− 2k) for i ≥ 1, where k is the largest integer such that 2k ≤ i.

We briefly recall why the potential function method is sound. By defini-
tion, the amortized cost of the i-th operation is ĉi = ci+Φi−Φi−1 where ci is
the actual cost of the i-th operation. The total amortized cost of a sequence

1What we need is Φn ≥ Φ0 and we can always (and almost always do) define Φ such
that Φ0 = 0

3

of n operations is then

n∑
i=1

ĉi =
n∑

i=1

ci + Φn − Φ0.

If Φn − Φ0 ≥ 0 (i.e. Φn ≥ Φ0), then the amortized cost n operations is at
least the actual cost of the same n operations. Thus, an upper bound on the
amortized cost of performing n operations is an upper bound on the actual
cost of performing n operations, which is what we want to derive.

In our case, we have Φ0 = 0 and Φi ≥ 0 for all i. Thus, all we have left
to do is prove that ĉi = O(1) for all i.

Let ∆Φi = Φi − Φi−1. There are 2 cases to consider. If i is not a power
of 2, then the actual cost of the i-th operation is ci = 1 and

∆Φi = 2(i− 2k)− 2(i− 1− 2k)

= 2i− 2k+1 − 2i+ 2k+1 + 2

= 2,

where we use that k takes the same value for both Φi and Φi−1 since i is not
a power of 2. In conclusion, ĉi = ci +∆Φi = 1 + 2 = 3.

If i = 2k for some natural number k, then the actual cost of the i-th
operation is ci = i = 2k and

∆Φi = 2(i− 2k)− 2(i− 1− 2k−1)

= 2i− 2k+1 − 2i+ 2k + 2

= −2k + 2

where we use that Φi−1 = 2(i− 2k−1) since i is a power of 2. In conclusion,
ĉi = ci +∆Φi = 2k − 2k + 2 = 2.

Thus, the total amortized cost of n operations is at most 3n, which is an
upper bound on the actual cost of performing n operations. Thus, the actual
cost performing n operations is O(n) which is what we wanted.

4

Exercise 16.3-3

Exercise

Consider an ordinary binary min-heap data structure supporting the
instructions INSERT and EXTRACT-MIN that, when there are items in the
heap, implements each operation in O(log n) worst-case time. Give a
potential function such that the amortized cost of INSERT is O(log n)
and the amortized cost of EXTRACT-MIN is O(1), and show that your
potential function yields these amortized time bounds. Note that in the
analysis, n is the number of items currently in the heap, and you do not
know a bound on the maximum number of items that can ever be stored
in the heap.

Suggested solution
We use the following idea. Suppose f(n) is the runtime of the EXTRACT-MIN
operation on a heap with n items. If we define Φi =

∑n
k=1 f(k), then the

potential drops by f(n) when an EXTRACT-MIN operation is performed. Thus,
the cost incurred by an EXTRACT-MIN operation is exactly cancelled out by
the change in potential and the amortized cost of the operation is O(1).
Furthermore, it is okay to increase the potential by f(n) on each INSERT

operation since f(n) = O(log n) and thus the amortized cost of the INSERT

operation is O(log n) +O(log n) = O(log n).
The above is nearly the entire argument. Formally, define Φi =

∑n
k=1 f(k)

where n is the number of items in the heap after the i-th operation. We have
Φ0 = 0 and Φi ≥ 0 for all i since f is a non-negative function (it is the number
of steps performed by an algorithm). Also, if the i-th operation is INSERT,
then ĉi = ci +∆Φi = O(log n) + f(n) = O(log n). If the i-th operation is an
EXTRACT-MIN operation we have ĉi = ci + ∆Φi = f(n) − f(n) = 0 = O(1),
which is what we wanted.

5

Exercise 16.3-5

Exercise

Show how to implement a queue with two ordinary stacks (Exercise 10.1-
7) so that the amortized cost of each ENQUEUE and each DEQUEUE opera-
tion is O(1).

Suggested solution
We may implement the queue as follows. Let S1 and S2 be the two stacks.
When we perform an ENQUEUE operation, we simply push the element onto
S1. When we perform a DEQUEUE operation, we first check if S2 is empty. If
it is, we pop all elements from S1 and push them onto S2. Then we pop the
top element from S2.

We assume that each PUSH and each POP operation on a stack has actual
cost 1. The actual cost of the ENQUEUE operation is thus 1 and the actual
cost of the DEQUEUE operation is 1 if S2 is not empty and 2|S1| if S2 is empty.

We define the potential Φi = 2|Si
1| where |Si

1| is the number of element
on S1 after the i-th operation. We have Φ0 = 0 and Φi ≥ 0 for all i. We now
determine the amortized cost ĉi of the i-th operation. If the i-th operation
is an ENQUEUE operation, we have ĉi = ci + ∆Φi = 1 + 2 = 3. If the i-th
operation is a DEQUEUE operation, we have ĉi = ci +∆Φi = 1 + 0 = 1 when
S2 is not empty and ĉi = ci +∆Φi = 2|Si−1

1 | − 2|Si−1
1 | = 0 when S2 is empty.

In any case, the amortized cost of the i-th operation is O(1).

6

Exercise 16.4-3

Exercise

Discuss how to use the accounting method to analyze both the insertion
and deletion operations, assuming that the table doubles in size when
its load factor exceeds 1 and the table halves in size when its load factor
goes below 1/4.

Suggested solution
We give a semi-formal argument that charging 3 for insertions and 2 for
deletions suffices.

Every time an insert operation is performed, we pay 1 credit immediately
to perform the operation and save 2 for the next expansion.

Every time a delete operation is performed, we pay 1 credit immediately
to perform the operation and save 1 for the next contraction.

First, consider an insert operation that causes an expansion and let n
be the size of the table after the insertion. Since the table doubles in size
every time, there has been at least n/2 insertion operations since the last
expansion, and we have saved 2 credit for each operation. Thus, we have at
least n credit saved up to perform the expansion, which is exactly the cost
of the operation.

Next, consider a deletion operation that causes a contraction and let n
be the size of the table after the delete operation. We observe that whenever
a contraction or expansion is performed, the table is exactly half full after
the operation. Since there must have been at least one expansion before
any contraction, the table must have been at least half full at some point.
Thus, there must have been at least n/4 deletion operations since the last
contraction/expansion. Thus, we have at least n/4 credit saved up to perform
the contraction, which is exactly the cost of the operation.

7

Exercise 16.4-4

Exercise

Suppose that instead of contracting a table by halving its size when its
load factor drops below 1/4, you contract the table by multiplying its
size by 2/3 when its load factor drops below 1/3. Using the potential
function

Φ(T) = |2(T.num− T.size/2)|

show that the amortized cost of a TABLE-DELETE that uses this strategy
is bounded above by a constant.

Suggested solution
Let si be the size of the table after the i-th operation and let ni be the
number of elements in the table after the i-th operation.

We think of deletion and contraction as two different operations. When-
ever a deletion causes a contraction, we think of this as first performing the
contraction and then performing the deletion.

Now, rewrite the potential function as Φi = |2ni − si|. When a deletion
is performed, we have si = si−1 and ni = ni−1 − 1. When a contraction is
performed, we have si =

2
3
si−1 and ni = ni−1.

For a deletion, the amortized cost is

ĉi = 1 + |2ni − si| − |2ni−1 − si−1|
= 1 + |2ni − si| − |2(ni + 1)− si|
= 1 + |2ni − si| − |2ni + 2− si|
≤ 1 + |2ni − si| − |2ni − si|+ 2

= 3.

In order to analyze the case where a contraction is performed, we start by
observing the following. We have si−1 = 3ni since this is the criterion for a
contraction. Also, we have si =

2
3
si−1 =

2
3
3ni = 2ni.

8

Now the amortized cost of a contraction is

ĉi = ni + |2ni − si| − |2ni−1 − si−1|
= ni + |2ni − 2ni| − |2ni − si−1|
= ni − |2ni − si−1|

= ni − |2ni −
3

2
2ni|

= ni − |2ni − 3ni|
= ni − | − ni|
= ni − ni = 0

which is what we wanted.

9

