DMbH82 Exercises - Sheet 8

Mads Anker Nielsen Tobias Samsge Sgrensen

March 26, 2025

This document contains exercises from the course DM582 (spring 2025).
Most exercises are from the book Introduction to Algorithms, 4th edition
by Cormen, Leiserson, Rivest, and Stein (CLRS), the book Algorithm De-
sign, 1st edition by J. Kleinberg and E. Tardos (KT), and the book Discrete
Mathematics and its Applications, Sth edition by K. Rosen.

The solutions given here might differ from the solutions discussed in class.
In class, we place more emphasis on the intuition leading to the correct
answer. Please do not consider reading these solutions an alternative to
attending the exercise classes.

References to CLRS refer to the book Introduction to Algorithms, 4th
edition by Cormen, Leiserson, Rivest, and Stein.

References to KT refer to the book Algorithm Design, 1st edition by J.
Kleinberg and E. Tardos.

References to Rosen refer to the book Discrete Mathematics and its Ap-
plications, 8th edition by K. Rosen.

This document will inevitably contain mistakes. If you find some, please
report them to your TA so that we can correct them.

Sheet 7

Exercise from course website

You know that red-black tree has many good properties. Now we’ll
add another: We’ll show that rebalancing is amortized constant. So,
yesterday you just knew that carrying out n operations would lead to
at most O(nlogn) rebalancing work. After today, you'll know that it’s
actually at most O(n) rebalancing work.

Please see the sheet with a more compact representation of the red-
black tree rebalancing operations. We refer to the operations in Figure
4 as (Ra) through (Rd) and the ones in Figure 5 as (Ba) through (Be)
('R’ for "red” and 'B’ for "black”). Half-colored nodes are either red or
black. You already know that an insertion may create a red conflict (two
consecutive red nodes) and that a deletion may create a black conflict (a
doubly-black node - indicated by ”-"). No operation creates additional
problems but the red or black conflicts may be moved up in the tree until
they disappear.

1. Call an operation finishing if it removes the conflict. Determine
which operations are finishing. For (Ra), consider two cases, de-
pending on whether the parent of the operation (that we don’t see
in the figure) is red or black.

2. Though (Bb) does not appear to be finishing, I would like to con-
sider it finishing. Why?

3. Refer to a configuration in the tree where a black node has two
black children as BBB and a configuration where a black node
has two red children as BRR. We define the potential function
®(T) = #BBB + 2#BRR, where #BBB is the number of BBB

configurations in 7.

4. If there are k updates, how much can the insertions and deletions
themselves plus all the finishing operations increase the potential?
Conclude that if we can show that all non-finishing operations de-
crease the potential by at least one, then rebalancing is amortized
constant.

5. Show that (Ba) decreases the potential - be careful with the sur-

&

6. Show that the non-finishing case of (Ra) decreases the potential.

roundings to make sure no new configurations in the potential func-
tion appears.

Here you have to look quite a bit at what the surroundings must
be.

Suggested solution

. Looking at the figures, we observe that all operations except (Ba),

(Bb), and (Ra) when the parent is red are finishing since they remove
the conflict.

. (Bb) is not finishing but it transforms the tree into a configuration

where the conflict is resolved in the next iteration by case (Bc), (Bd),
or (Be).

. Nothing to answer here :).

. The potential is a function of how many connected subtrees of size

3 have certain properties. Since every insertion, deletion or finishing
operation modifies only a constant number of connected subtrees of size
3, the potential can increase by at most a constant amount. Note that
one could explicitly calculate exactly how much the potential changes
for each operation, but it is not necessary to obtain the desired result
that the amortized cost of rebalancing is constant.

Now, assuming that one unit of potential is enough to pay for any
non-finishing operation and any non-finishing operation decreases the
potential by at least one, then all non-finishing operations pay for them-
selves. That is, all non-finishing operations have non-positive amortized
cost. If all non-finishing operations have non-positive amortized cost,
and the insertion, deletion and finishing operations have amortized cost
O(1), then the amortized cost of rebalancing is O(1).

. We calculate the contribution to the potential from the subtree affected

by the operation before and after performing the operation. Figure 1
highlights the relevant configurations.

. We take the same approach as in the previous part. See Figure 2.

Figure 1

888 888
A\ /\, /'\ 7\
AN o /) -~ /
AR T A AN AN
o = o =2 =
00:=- a0=-1
Figure 2

CLRS, Problem 16-2

-

Binary search of a sorted array takes logarithmic search time, but the
time to insert a new element is linear in the size of the array. You can
improve the time for insertion by keeping several sorted arrays. Specifi-
cally, suppose that you wish to support SEARCH and INSERT on a set
of n elements. Let k = [logy(n + 1)], and let the binary representation
of n be (ng_1,nk_2,...,n0). Maintain k sorted arrays Ao, A1,..., Ax_1,
where for i = 0,1,...,k — 1, the length of array A, is 2°. Each array
is either full or empty, depending on whether n; = 1 or n; = 0, respec-
tively. The total number of elements held in all k arrays is therefore
Zf:_ol n;2" = n. Although each individual array is sorted, elements in
different arrays bear no particular relationship to each other.

a. Describe how to perform the SEARCH operation for this data struc-
ture. Analyze its worst-case running time.

b. Describe how to perform the INSERT operation. Analyze its worst-
case and amortized running times, assuming that the only opera-
tions are INSERT and SEARCH.

Suggested solution

a. One way would be to simply perform a binary search on each of the at
most k non-empty arrays. If all arrays are full, the time complexity is
O(klogn) = O(log*n).

b. We start by merging the arrays Ag, Ay, ..., A,, and the element to be

inserted into a single array A,,, where m is the smallest index such that
Ny, = 0. That is, m is the index of the least significant 0 in the binary
representation of n. Notice that this simply inserts the new element
into the array Aq if m = 0.

Merging two arrays of size 2° can be done in 2! time using the standard
merge algorithm as in merge sort. Thus, first merging the new element
and Ag, then the resulting array with A;, and so on, we can merge all
the arrays in time 2! + 2% 4. .. 4+ 2™ = ©(2™*2) which is ©(n) in the
worst case.

However, we can show that the amortized cost of an INSERT is actually
O(logn). We can show this using the aggregate method. Consider any

sequence of n insertion operations. Ag is merged with the new element
every operation at cost 2, Ay is merged with A every second operation
at cost 4, in general, A; is merged with A,_; every 2'-th operation at
cost 271, Let m = [logy(n)]. The total cost of the n insertions is thus

zm:%ai“ - zm:Qn: 2n(m + 1)
1=0 i=0

and hence the amortized cost per operation is 2(m + 1) € O(logn).

Consider an ordinary binary search tree augmented by adding to each
node x the attribute x.size, which gives the number of keys stored in
the subtree rooted at z. Let a be a constant in the range 1/2 < o < 1.
We say that a given node x is a-balanced if x.left.size < o - x.size and
x.right.size < «a - x.size. The tree as a whole is a-balanced if every
node in the tree is a-balanced. The following amortized approach to
maintaining weight-balanced trees was suggested by G. Varghese.

a. A 1/2-balanced tree is, in a sense, as balanced as it can be. Given
a node x in an arbitrary binary search tree, show how to rebuild
the subtree rooted at x so that it becomes 1/2-balanced. Your
algorithm should run in ©(z.size) time, and it can use O(z.size)
auxiliary storage.

b. Show that performing a search in an n-node a-balanced binary
search tree takes ©(logn) worst-case time.

c. For the remainder of this problem, assume that the constant a
is strictly greater than 1/2. Suppose that you implement INSERT
and DELETE as usual for an n-node binary search tree, except that
after every such operation, if any node in the tree is no longer a-
balanced, then you "rebuild “ the subtree rooted at the highest such
node in the tree so that it becomes 1/2-balanced. We’ll analyze this
rebuilding scheme using the potential method. For a node x in a
binary search tree T, define A(x) = |z.left.size — x.right.size|.
Define the potential of T" as

oT)=c > Al

z€T:A(x)>2

where ¢ is a sufficiently large constant that depends on a Argue
that any binary search tree has nonnegative potential and also that
a 1/2-balanced tree has potential 0.

d. Suppose that m units of potential can pay for rebuilding an m-node
subtree. How large must ¢ be in terms of « in order for it to take
O(1) amortized time to rebuild a subtree that is not a-balanced?

e. Show that inserting a node into or deleting a node from an n-node
a-balanced tree costs O(n) amortized time.

Suggested solution

a. One way to do this is by first obtaining a sorted array of the elements
in the subtree rooted at x by doing an in-order traversal of the subtree.
Then, we can build a 1/2-balanced subtree by selecting the middle
element of the array and then recursively building the left and right
subtrees from the elements to the left and right of the middle element.

b. Suppose we take an arbitrary path P = niny...n; form the root to a
leaf. Since n;.size < 1/2-n;.size, we have ny.size = 1 < (1/2)F-ny.size
which implies k < log, n. Since P was arbitrary, we conclude that the
height of the search tree is O(logn) and thus searching takes O(logn)
time.

c. Assuming c is nonnegative, the potential of a tree is the sum of positive
values multiplied by a positive constant, and is thus nonnegative. A
1/2-balanced tree has potential 0 since A(z) < 1 for all z in the tree,
and thus the sum in the definition of ¢(7') is 0.

d. Suppose that the i-th operation is a rebalancing operation and that the
actual cost of rebuilding an m-node subtree is m, the amortized cost
of rebuilding an m-node subtree is

G =m+¢(L;) — ¢(Ti-1).

By c., the potential of a 1/2-balanced tree is 0, and hence we have
¢ = m — ¢(T;—1). Thus, picking ¢ such that m < ¢(T;_1) we have
¢; < 0. Let x denote the root of the subtree being rebuilt and let [
and r denote the size of the left and right subtrees of = respectively.
Without loss of generality, assume that the right subtree is larger or
switch the roles of [and r. ¢(T;_1) is the sum of ¢A(n) over all nodes
n in the tree such that A(n) > 2. z is one such particular node, and
thus ¢(T;—1) > cA(x) = ¢|r —1| = ¢(r —1). Now, solving for ¢ such that
c(r—1) > m we get

m < c¢(r—1)
=c(r—(m-r—1))
=c(2r—m+1))
< c(2am —m+1)

1
2a—1°
will make the amortized cost of

_m
2am—m+1"’

which implies ¢ > which is bounded from above by
Thus, setting ¢ > 5= > "

rebuilding a subtree O(1).

