
DM582 Exercises - Sheet 9

Mads Anker Nielsen Tobias Samsøe Sørensen

April 1, 2025

This document contains exercises from the course DM582 (spring 2025).
Most exercises are from the book Introduction to Algorithms, 4th edition
by Cormen, Leiserson, Rivest, and Stein (CLRS), the book Algorithm De-
sign, 1st edition by J. Kleinberg and E. Tardos (KT), and the book Discrete
Mathematics and its Applications, 8th edition by K. Rosen.

The solutions given here might differ from the solutions discussed in class.
In class, we place more emphasis on the intuition leading to the correct
answer. Please do not consider reading these solutions an alternative to
attending the exercise classes.

References to CLRS refer to the book Introduction to Algorithms, 4th
edition by Cormen, Leiserson, Rivest, and Stein.

References to KT refer to the book Algorithm Design, 1st edition by J.
Kleinberg and E. Tardos.

References to Rosen refer to the book Discrete Mathematics and its Ap-
plications, 8th edition by K. Rosen.

This document will inevitably contain mistakes. If you find some, please
report them to your TA so that we can correct them.

1

Sheet 9

CLRS, 32.1-1

Exercise

Show the comparisons the naive string matcher makes for the pattern
0001 in the text 000010001010001.

Suggested solution
We did this on the blackboard in class.

2

CLRS, 32.1-2

Exercise

Suppose that all characters in the pattern are different. Show how to
accelerate NAIVE-STRING-MATCHER to run in time O(n) on n-character
text T .

Suggested solution
When we check for an occurrence at shift s and find a mismatch, say when
comparing with P [i], we can skip directly to checking shift s + i instead of
shift s+ 1. Indeed, if some i-length prefix P [1 : i], i ∈ [m], occurs with shift
s in T , then T [s+ j] = P [j] ̸= P [1] for j = 2, 3, . . . , i since all characters are
distinct.

This approach ensures that every character in T participates in at most 2
comparisons (possibly 2 for the characters that cause a mismatch) and thus
the runtime is O(n).

3

CLRS, 32.1-3

Exercise

Suppose that pattern and text are randomly chosen strings of length
m and n respectively, from the d-ary alphabet Σd = {0, 1, . . . , d − 1},
where d ≥ 2. Show that the expected number of character-to-character
comparisons made by the implicit loop in line 4 of the naive algorithm is

(n−m+ 1)
1− d−m

1− d−1
≤ 2(n−m+ 1)

over all executions of this loop. (Assume that the naive algorithm stops
comparing characters for a given shift once it finds a mismatch or matches
the entire pattern.) Thus, for randomly chosen strings, the naive algo-
rithm is quite efficient.

Suggested solution
Let X be a random variable whose value is the number of comparisons made.
We can decompose X as X =

∑n−m
s=0 Xs where Xs is a random variable whose

value is the number of comparisons made when checking for an occurrence
at shift s. We can argue that Xs =

1−d−m

1−d−1 directly, or explicitly decompose
it into indicator random variables, which we do here. Xs can be expressed
as Xs =

∑m
i=1Xs,i where Xs,i is an indicator random variable for the event

that the i-th iteration of the loop is reached when checking for an occurrence
of the pattern at shift s. The event P [i] = T [s+ i] occurs independently and
with probability 1/d for all i ∈ [m], and we proceed to the next iteration iff
P [i] = T [s + i]. Thus, the probability that the i-th iteration is reached is
(1/d)i−1 and hence E[Xs,i] = (1/d)i−1 for s = 0, 1, . . . , n−m, i = 1, 2, . . . ,m.

4

We now get

E[Xs] =
m∑
i=1

E[Xs,i]

=
m∑
i=1

(
1

d

)i−1

=
m−1∑
i=0

(
1

d

)i

=
(1/d)m − 1

1/d− 1

=
1− d−m

1− d−1
≤ 1

1− d−1
≤ 2

where the fourth equality follows from the general formula for the sum of a
truncated geometric series (see e.g. Rosen p. 176). Now,

E[X] =
n−m∑
s=0

E[Xs]

≤
n−m∑
s=0

2

= 2(n−m+ 1)

as desired.

5

CLRS, 32.1-4

Exercise

Suppose we allow the pattern P to contain occurrences of a gap character
⋄ that can match an arbitrary string of characters (even one of zero
length). For example,

Example omitted. See CRLS page 962.

The gap character may occur an arbitrary number of times in the
pattern but not at all in the text. Give a polynomial-time algorithm
to determine whether such a pattern P occurs in a given text T , and
analyze the running time of your algorithm.

Suggested solution
We observe that an occurrence of such a pattern P in a text T corresponds
to a sequence of matches of the substrings of P between the gap characters.

Formally, let P1, P2, . . . , Pk be substrings of P not containing ⋄ such that
P = P1 ⋄ P2 ⋄ · · · ⋄ Pk and let T be the text.

If k = 0 then return true immediately. Otherwise, find the first occurrence
of P1 in T . If no such occurrence exists, then return false. Otherwise, let s1 be
the shift of the first occurrence of P1 in T and recursively find P2, P3, . . . , Pk

in T [s1 + |P1|+ 1 :] and return the result.
The algorithm degenerates to the naive string matching algorithm if P

does not contain any gap characters and otherwise the runtime only improves
as we are simply solving a sequence of non-overlapping subproblems of smaller
size.

6

CLRS, 32.2-1

Exercise

Working modulo 11, how many spurious hits does the Rabin-Karp matcher
encounter in the text 3141592653589793 when looking for the pattern
P = 26?

Suggested solution
We have 26 mod 11 = 4. Below we list the result of x mod 11 for every
length 2 substring of the text.

• 31 mod 11 = 9. No hit.

• 14 mod 11 = 3. No hit.

• 41 mod 11 = 8. No hit.

• 15 mod 11 = 4. Spurious hit.

• 59 mod 11 = 4. Spurious hit.

• 92 mod 11 = 4. Spurious hit.

• 26 mod 11 = 4. Hit.

• 65 mod 11 = 10. No hit.

• 53 mod 11 = 9. No hit.

• 35 mod 11 = 2. No hit.

• 58 mod 11 = 3. No hit.

• 89 mod 11 = 1. No hit.

• 97 mod 11 = 9. No hit.

• 79 mod 11 = 2. No hit.

• 93 mod 11 = 5. No hit.

3 of the hits are spurious.

7

CLRS, 32.2-4

Exercise

Alice has a copy of a long n-bit file A = (an−1, An−2, ..., A0), and Bob
similarly has an n-bit file B = (bn−1, bn−2, ..., b0). Alice and Bob wish
to know if their files are identical. To avoid transmitting all of A or B,
they use the following fast probabilistic check. Together, they select a
prime q > 1000n and randomly select an integer x from {0, 1, ..., q − 1}.
Letting

A(x) =
n−1∑
i=0

aix
i mod q and B(x) =

n−1∑
i=0

bix
i mod q,

Alice evaluates A(x) and Bob evaluates B(x). Prove that if A ̸= B, there
is at most one chance in 1000 that A(x) = B(x), whereas if the two files
are the same, A(x) is necessarily the same as B(x). (Hint: See Exercise
31.4-4.)

Suggested solution
We start by proving the claim from Exercise 31.4-4 that a non-zero polyno-
mial of degree t has at most t distinct zeros modulo q. We assume that it
has already been proven that a polynomial f of degree t can be written as
f(x) = (x− a)g(x) for any zero a of f(x) where g is a polynomial of degree
t− 1.

We prove the claim by induction on t. For t = 1, a non-zero polynomial
f has the form f(x) = ax + b for some constants a and b. The zeros of
f are the solutions to the modular congruence ax ≡ −b mod q, which has
at most one solution since q is prime (no solutions if a = 0 and b > 0 and
exactly one solution otherwise). Suppose that the claim holds for t > 1 and
let f be a non-zero polynomial of degree t + 1. If f has no zeros then we
are done and otherwise let a be a zero of f . Then f(x) = (x − a)g(x) for
some polynomial g of degree t. Since f is non-zero, g is also non-zero. By
the induction hypothesis, g has at most t zeros, and zero of f is either a or
a zero of g and thus f has at most t+ 1 zeros.

We now prove the claim of this exercise. If A(x) ≡ B(x) mod q then

n−1∑
i=0

(ai − bi)x
i ≡ 0 mod q.

If A ̸= B, then the polynomial f(x) =
∑n−1

i=0 (ai − bi)x
i is non-zero and has

degree at most n− 1 and thus has at most n− 1 zeros modulo q. Thus, the

8

probability that the randomly chosen x is a zero of f is at most n−1
q

< 1
1000

.

Furthermore, if A = B then clearly A(x) = B(x) (without the modulus) and
thus also A(x) ≡ B(x) mod q.

9

CLRS, 32.3-1

Exercise

Draw a state-transition diagram for the string-matching automaton for
the pattern P = aabab over the alphabet Σ = {a, b} and illustrate its
operation on the text string aaababaabaababaab.

Suggested solution
See figure 1 for a state-transition diagram of the string-matching automaton.
We demonstrated the operation of this automaton in class. It operates just
like any other DFA.

Figure 1

10

