DM819 - Computational Geometry

(Geometriske Algoritmer)

"Elective Courses Presentation"

\author{
Kim Skak Larsen
 IMADA
 University of Southern Denmark
 ```
kslarsen@imada.sdu.dk

``` \\ imada.sdu.dk/u/kslarsen/
}

\section*{Examples}

- Given \(n\) points, compute the convex hull. Be able to maintain it dynamically under insertion of points.
- Given \(n\) points, compute their triangulation.
- Preprocess \(n\) line segments in \(O(n \log n)\), building a data structure in preparation for ray shooting so that queries such as this can be answered in time \(O(\log n+k)\), where \(k\) is the number of line segments to report.

\section*{Course Content}

Algorithms and Data Structures for Geometric Objects
- Triangulations and Voronoi Diagrams
- Interval and Point Searches
- Convex Hulls
- Ray Shooting and Range Searching
- Motion Planning and more...

Introduction to (continuation of) important general techniques:
- Plane Sweeping and Fractional Cascading
- Randomization and Amortization

Geometric algorithms have applications (not covered) in
- Computer Graphics, Geographic Information Systems, Design
- Robot Motion Planning, Image Analysis, Computer Games

\section*{Prerequisites}

\section*{Analysis of Algorithms and Data Structures}
- primarily algorithms and data structures
- and a little discrete math and probability theory
- for maturity, having followed advanced algorithms and computability and complexity wouldn't hurt

If you want the course, but don't have the prerequisites, then talk to me!
More concretely,
- Search Trees (red-black trees) and Priority Queues
- Divide and Conquer
- Asymptotic Notation
- Correctness Analysis
- Time and Space Analysis, including simple probability theory and adversarial arguments

\section*{Why Is This a Separate Course?}


Q: It appears that it's bacially algorithms! Why is it then a separate course and not just a part of other courses?

A: Beyond one dimension, there's no total ordering that preserves geometric proximity - this leads to all sorts of (fun) challenges that are quite different from the usual setups!

\section*{Format}
- 10 ECTS over one semester
- Exam: oral (heighest weight) and programming project (in parts)
- 2 h lectures, 2 h exercises per week
- programming project continuously throughout the semesters
- Good book: Computational Geometry

Algorithms and Applications, 3. eds.
de Berg, Cheong, van Kreveld, Overmars Springer, 2008.

\section*{Disclaimer}
- Chalk \& blackboard lectures
- Core algorithmic problems (not graphics and games)
- The focus is on efficient algorithms - mostly \(O(n \log n)\)
- It says "geometry", but this is not math! ( \(\leq\) high school geometry)
- But there will be proofs/arguments in most lectures (of correctness and/or complexity)
- Course language is English, if necessary
- No TA, and the lecturer will not help with debugging

See My Home Page for More Information```

