Matching under Preferences

Marco Chiarandini
Lektor

Department of Mathematics \& Computer Science
University of Southern Denmark

Optagelsessystemet (KOT)

Snart vil du ansøge for optagelsen i en vidergående uddannelse
Du kan søge op til 8 forskellige uddannelser i prioriteret rækkefølge (i gennemsnit søger man 2,8 uddannelser). Det kan både være kvote 1- og kvote 2-ansøgninger. Men du kan højst blive optaget på én uddannelse ét sted.

Mest uddannelsesteder har et begrænset antal pladser og giver preference til studerende med højere karaktergennemsnit.

I 2020 var der 94.599 ans \varnothing gerer der s \varnothing gte en af de ca. 900 uddannelser af disse ca. 75.000 (inkl standby) blev optaget.
Af disse 30.578 blev optaget i en af de 100 bacheloruddannelser. (Kilde: Den Koordinerede Tilmeldings database og Danmarks Statistik).

Hvordan fungerer tildelingsproceduren?

KOT HOVEDTAL

2023
28. juli

Matching under preferences

Matching agents one to another
Examples:

- pupils to schools
- junior doctors to hospitals
- kidney patients to donors
- roommate assignments
subject to ordinal preferences over a subset of the others. That is, there is a ranking or list of preferences with first choice, second choice, etc., on both sides

Other issues:

- capacity constraints
- large scale applications: in Hungary in 2011, 140.953 students applied for admission at universities; In US National Resident Matching Program in 2012, 38.777 aspiring residents, 26.772 available positions.
- free-for-all markets: free negotiations: issues of unraveling, congestion, exploiting offers

Centralized Matching Schemes

Third party computes (automatically) optimal matching
pursuing one or more of these criteria:

- maximizing the number of places filled in the educational programmes,
- giving the maximum number of applicants their first-choice programme,
- ensuring no applicant and programmes have an incentive to reject their assignees and become matched together.

How can all this be done?

David Gale and Lloyd S. Shapley College Admission and the Stability of Marriage The American Mathematical Monthly, Vol. 69, No. 1. 1962
college admissions and the stability of marriage
D. GALE* ANo L. S. SHAFLEY, Brown Ualienity and the RAND Capportion

1. Introduction. The problem with which we shall be concerned relates to
the following typical situation: A college is considering a set of n applicants o which it can admit a quota of oaly q. Having evaluated their qualifications, the admissions office must decide which ones to admit. The procedure of offering admisstion only to the q best-qualifed applicants will not geserally be satisfac
tory, for it cannot be assumed that all who are offered admistion will accept. Accordingly, in order for a college to receive q acceptances, it will generally have to offer to admit more than q applicants. The problem of determining how many and which ones to admit requires some rather involved guesswork. It may not be known (a) whether a given applicant has also applied elsewhere: if this is
known it may not be known (b) how he ranks the colleges to which he has applied; even if this is known it will not be known (c) which of the other collegen will offer to admit him. A result of all this uncertainty is that colleges can expect only that the entering class will come reasonably close in aumbers to the The usual admissions procedure preseats problems for the applicants as well as the colleges. An applicant who is aoked to list in his application all other colleges applied for in order of preference may feel, perhaps not without reasoo, hat by telling a college it is, say, his third choice be sill be burting his chances of being admitted.
One elaboration
cant can be informed that he is not admitted but may be admitted later if a vacancy occurs. This introduces new problems. Suppose an applicant is accepted by one college and placed on the waiting list of another that he prefers. Shoold him later? Is it ethical to accept the first without informing the second and then withdraw his acceptance if the second later admits him?
We contend that the difificulties here described can be avoided. We shall de scribe a procedure for assigning applicants to colleges which should be satisfac are enough applicants, assigns to each college precisely its quota.
2. The assignment criteria. A set of n applicants is to be assigned among m colleges, where q, is the quota of the ith college. Each applicant ranks the colleges in the order of his preference, omitting only those colleges which he would never accept under any circumstances. For convenience we assume there are no ties; thus, if an applicant is indifferent between two or more colleges he is neverthe who have applied to it in order of preference, having first eliminated those appli-
 NROETOIS.

Stable Matching - Problem Statement

- A matching is collection of pairs of agents in such a way that no agent is in more than one pair
- A stable matching is a matching in which two agents cannot be found, who would prefer each other over their current counterparts (unstable pair).

Formalization:

Input:

n men and n women, where each person has ranked all members of the opposite sex with a unique number between 1 and n in order of preference.

Output:

A matching of the men and women with no unstable pair.

Two men and two women: unstable matching

- Example 1: (consensus preference: 1 stable matching) m prefers w to w^{\prime}; m^{\prime} prefers w to w^{\prime}; w prefers m to m^{\prime}; w^{\prime} prefers m to m^{\prime};

- In matching 2, m and w form an unstable pair: (red, dashed line) - both m and w prefer the other to their current partners;

Two men and two women: stable matching

- Example 2: (different preference: 2 stable matchings) m prefers w to w^{\prime}; m^{\prime} prefers w^{\prime} to w; w prefers m^{\prime} to m; w^{\prime} prefers m to m^{\prime};

Match 2

- Both matching 1 and 2 are stable.

Three men and three women: unstable matching

	favorite \downarrow		least favorite		favorite \downarrow		least favorite
	$1^{\text {st }}$	$2^{\text {nd }}$	3 rd		$1^{\text {st }}$	$2^{\text {nd }}$	3 rd
Xavier	Amy	Bertha	Clare	Amy	Yancey	Xavier	Zeus
Yancey	Bertha	Amy	Clare	Bertha	Xavier	Yancey	Zeus
Zeus	Amy	Bertha	Clare	Clare	Xavier	Yancey	Zeus
Men's Preference Profile				Women's Preference Profile			

- Is matching $X-C, Y-B, Z-A$ stable?
- No. Bertha and Xavier will unravel and engage with each other.

Three men and three women: stable matching

	favorite \downarrow		least favorite \downarrow
Xavier	Amy	Bertha	Clare
Yancey	Bertha	Amy	Clare
Zeus	Amy	Bertha	Clare
Men's Preference Profile			

	favorite \downarrow		least favorite
	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$
Amy	Yancey	Xavier	Zeus
Bertha	Xavier	Yancey	Zeus
Clare	Xavier	Yancey	Zeus

- The matching $X-A, Y-B, Z-C$ is stable.

Questions

Does there always exist a stable marriage?
If yes, how can we always find it?
What is the computational cost?

Question

Does there always exist a stable marriage?
How to find a stable matching?
Constructive proof

Trial 0: Brute Force

Enumerate all possible matchings + Stability Checking Algorithm
for $m:=1$ to n do
for each w such that m prefers w to $M(m)$ do if w prefers m to $M(w)$ then return unstable;
return stable;

How many matchings are there? How many operations overall?

I 2015 var der 92.477 ansøgerer, af disse 40.565 søgte en af de 100 bacheloruddannelser. (Kilde: Den Koordinerede Tilmeldings database)

$$
40565!\approx 1.6304 \times 10^{169315}
$$

A desktop computer (Intel Core i7 5960X) does 238310×10^{6} instructions per second (MIPS)

$$
\frac{40565!}{238310 \times 10^{6} \times 31536000} \approx 2224 \times 10^{169299} \text { years }
$$

Trial 1: Improvement strategy

Trial 1: Improvement strategy

- Basic idea: start from a complete matching, and try to improve the matching via reducing unstable pairs. If the number of unstable pairs is reduced to 0 , then we get a solution.
- Switching operation: making unstable pairs to be stable
- An example of Switching operation:
m prefers w to w^{\prime};
m^{\prime} prefers w to w^{\prime};
w prefers m to m^{\prime};
w^{\prime} prefers m to m^{\prime};

stable

Trial 1: Improvement strategy

Initializing a matching randomly; while there exist unstable pairs do

Select an unstable pair $m-w$ arbitrarily ;
Perform Switching operation to resolve the unstable pair $m-w$;

Improvement strategy: a success case

	favorite \downarrow		least favorite \downarrow
	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$
Xavier	Amy	Bertha	Clare
Yancey	Bertha	Amy	Clare
Zeus	Amy	Bertha	Clare

	favorite		least favorite
	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$
Amy	Yancey	Xavier	Zeus
Bertha	Xavier	Yancey	Zeus
Clare	Xavier	Yancey	Zeus

- Starting from an unstable matching. After one step of switching, we get a stable matching.

Improvement strategy: a failure case

	man					woman			
	1st	2nd	3rd	4th		1st	2nd	3rd	4th
W	C	B	D	A	A	Z	W	Y	X
X	B	D	C	A	B	W	Y	X	Z
Y	C	D	B	A	C	X	Y	W	Z
Z	D	C	B	A	D	X	Y	W	Z

Starting from an unstable matching Step 1, 2, 3, 4, 5, 6. Failed! Return to the initial matching.

Trial 2: Construction strategy

Trial 2: Construction strategy

- Key observation: the solution is a compelte matching.
- Basic idea: Growing up from partial matching to complete matching, and ensure no unstable pairs during the increment process.
- Implementation: a "propose-engage" process. Man: propose, woman: accept or reject.

complete solution

partial solution

Stable Matching - Gale_Shapley algorithm

Day 1 Each man proposes to his choice n. 1 . Some women will receive some proposals, other none. Each woman reject all suitors except the top ranked. Tentative engagements are formed.

Day 2 Each rejected man proposes to his next best choice independently on whether she is engaged or not.
Each woman rejects all but her top suitors
Day $3,4,5, \ldots$ Repeat as in Day 2

Stable Matching - Gale_Shapley algorithm

A bit more formal algorithm:
assign each person to be free
while some man m is free do
$w=$ first woman on m 's list to whom m has not yet proposed
if w is free then
assign m and w to be engaged (to each other)
else
if w prefers m to her fiance' m^{\prime} then
assign m and w to be engaged and m^{\prime} to be free
else
w rejects m (and m remains free)

Correctness proof

Key observations of Gale_Shapley algorithm

Key observations:

1. Men propose to women in the decreasing order of preference.
2. Once a woman is matched, she never becomes unmatched.
3. When a man proposes, the existing matching might be destroyed.

Correctness: perfection

Theorem

All men and women finally get matched and the algorithm terminates.

Bevis.
Suppose $m^{\prime \prime}$ is not matched upon termination;

- then there is woman, say $w^{\prime \prime}$, is not matched;
- then $w^{\prime \prime}$ should be never proposed to (by Observation 2);
- But $m^{\prime \prime}$ proposes to everyone. Contradiction.

Correctness: stability

Theorem

At each step of the while loop, the intermediate partial match is a stable match. As a special case, the finally reported match S^{*} contains no unstable pairs.

Bevis.
Suppose $m-w^{\prime}$ is an unstable pair: each prefers the other to the current partner in S^{*};

- Case 1: m never proposed to w^{\prime}
$\Rightarrow m$ prefers his GS partner w to w^{\prime}
$\Rightarrow m-w^{\prime}$ is stable. A contradiction.

Correctness: stability

- Case 2: m has proposed to w^{\prime}
$\Rightarrow m$ should be rejected by w^{\prime}
$\Rightarrow w^{\prime}$ prefer her GS partner m^{\prime} to m
$\Rightarrow m-w^{\prime}$ is stable. A contradiction.

Corollary

A stable marriage always exists.

Algorithm analysis: time complexity and space complexity

Analysis: time-complexity

Theorem

Gale-Shapley algorithm ends in $O\left(n^{2}\right)$ steps.

Bevis.

- Key: find a measure of progress for this while(1) type loop;
- Measure: the number of tried proposals \#P;
(see an extra slide)

Analysis: time-complexity

- Each step: \#P increases at least 1 ;
- Upper bound: $\# P \leq n^{2}$
- So $T(n)=\#$ Step $\leq n^{2}$;

Time complexity and space complexity

- Time (space) complexity of an algorithm quantifies the time (space) taken by the algorithm.
- Since the time costed by an algorithm grows with the size of the input, it is traditional to describe running time as a function of the input size.
- input size: The best notion of input size depends on the problem being studied.
- For the Stable Matching problem, the number of items in the input, i.e. the number of men, is the natural measure.
- For the Multiplication problem, the total number of bits needed to represent the input number is the best measure.

Running time: we are interested in its growth rate

- Several simplifications to ease analysis of Gale-Shapley algorithm:

1. We simply use the number of primitive operations (rather than the exact seconds used) under the assumption that a primitive operation costs constant time. Thus the running time is $T(n)=a n^{2}+b n+c$ for some constants a, b, c.
2. We consider only the leading term, i.e. $a n^{2}$, since the lower order terms are relatively insignificant for large n.
3. We also ignore the leading term's coefficient a since it is less significant than the growth rate.

- Thus, we have $T(n)=a n^{2}+b n+c=O\left(n^{2}\right)$. Here, the letter O denotes order.

Polynomial vs Exponential and Factorial growth

Big O notation

- Recall that big O notation is used to describe the error term in Taylor series, say:

$$
e^{x}=1+x+\frac{x^{2}}{2}+O\left(x^{3}\right) \text { as } x \rightarrow 0
$$

Example: $f(x)=O(g(x))$ as there exists $c>0$ (e.g. $c=1$) and $x_{0}=5$ such that $f(x)<c g(x)$ whenever $x>x_{0}$

$\operatorname{Big} \Omega$ and $\operatorname{Big} \Theta$ notations

- In 1976 D.E. Knuth published a paper to justify his use of the Ω-symbol to describe a stronger property. Knuth wrote: "For all the applications I have seen so far in computer science, a stronger requirement ... is much more appropriate".
- He defined

$$
f(x)=\Omega(g(x)) \Leftrightarrow g(x)=O(f(x))
$$

with the comment: "Although I have changed Hardy and Littlewood's definition of Ω, I feel justified in doing so because their definition is by no means in wide use, and because there are other ways to say what they want to say in the comparatively rare cases when their definition applies".

- Big Θ notation is used to describe " $f(n)$ grows asymptotically as fast as $g(n)$ ".

$$
f(x)=\Theta(g(x)) \Leftrightarrow g(x)=O(f(x)) \text { and } f(x)=O(g(x)) .
$$

Space Complexity - Gale_Shapley algorithm

assign each person to be free
while some man m is free do
$w=$ first woman on m 's list to whom m has not yet proposed
if w is free then
assign m and w to be engaged (to each other)
else
if w prefers m to her fiance' m^{\prime} then
assign m and w to be engaged and m^{\prime} to be free
else
w rejects m (and m remains free)

Space Complexity - Gale Shapley algorithm

Data structures

for $m=1$ to M do
L partnerForMan $[m]=$ NULL
for $w=1$ to W do
L partnerForWoman $[w]=$ NULL
while TRUE do
if there is no man m such that partnerForMan $[m]=N U L L$ then
L return;
select such a man m arbitrarily;
$w=$ the first woman on m^{\prime} s list to whom m have not yet proposed;
if partnerForWoman $[w]==N U L L$ then
partnerForWoman $[w]=m$; partnerForMan $[m]=w$;
else if w prefers m to partnerForWoman $[w]$ then
partnerForMan[partnerForWoman[w]] = NULL;
partnerForWoman $[w]=m$;
partnerForMan $[m]=w$;
else
//do nothing means simply rejecting m;

Are there different ways to solve the problem?
How do they compare?
What would the best possible assignment for a man in a stable marriage?

Other Results

Theorem

Any execution of Gale_Shapley algorithm yields the same matching S*.
Note:

- The theorem is non-trivial since in line 11 , an unmatched man m is selected arbitrarily.

Notations:

- Valid partner: w is a valid partner of m if the pair $m-w$ exists in a stable match;
- Man-optimal match: each m pairs with his best valid partner, i.e., the best choice he can get.

Lemma
The Gale_Shapley algorithm generates a man-optimal match S^{*}.

Notation: for a man m, we indicate by $w \succ_{m} w^{\prime}$ if w is ranked higher than w^{\prime} in the list of m.

Proof

- A proposal is called "unlucky" if the man proposes to a woman with rank lower than his best valid partner ($w^{\prime} \prec_{m}$ best_valid (m)).
- For the sake of contradiction, suppose there is at least one unlucky proposal in an execution.
- Let $T=\{t \mid$ at step t a man proposes to a woman with rank lower than his best valid partner $\}$. Let $T_{0}=\min T$, i.e. the first unlucky proposal occurs.
- Suppose at time T_{0} it is m that proposes to w^{\prime} such that $w^{\prime} \prec_{m}$ best_valid (m).
- Thus before step T_{0}, m should have proposed to his best valid partner (denoted as w) since w is ranked more highly than w^{\prime}.

Proof cont'd

- But m finally didn't pair with w. Why?

There are two cases:

1. m was rejected by w directly: w has already paired with m^{\prime} and in her rank list, m^{\prime} is better than m (see left-hand panel).
2. m was accepted by w but was dumped by w afterwards: m^{\prime} is proposing w and in her rank list, m^{\prime} is better than m (see right-hand panel).
\rightarrow Step $\left.j-k: m^{\prime} \longrightarrow w\right) w=b v(m)$
\Rightarrow Step $j: m$ Reject $w w=b v(m)$
Step $T_{0}: m \longrightarrow w^{\prime}<b v(m)$

In both cases, the following property holds:

1. For w : w prefers m^{\prime} to m.
2. For $m^{\prime}: w \succeq_{m^{\prime}}$ best_valid $\left(m^{\prime}\right)$ since T_{0} is the first time that an "unlucky" proposal occurs.

Proof cont'd

- The fact that w is best valid partner of m means that there exists a stable matching, denoted as S^{\prime}, where m pairs with w. Suppose that m^{\prime} pairs with $w^{\prime \prime}$ in S^{\prime}.

Stable match S^{\prime}

- Then $m^{\prime}-w$ should be an unstable pair. (Why?)
- A contradiction. In other words, unlucky proposals never occur in the "propose-engage" process, and any executions of the algorithm yields the same stable matching.

Corollary
The Gale_Shapley algorithm assings every woman to her worse valid man.

Summary

- Matching under preferences
- Gale Shapley (1962) algorithm for stable matchings.
- Algorithm design
- Algorithm analysis (correctness, properties, running time)
- Algorithm implementation
- Math and Computer Science: from the real world to abstractions and return

Context

In economics (game-theory):

- matching theory as part of market design in microeconomics
- matching algorithm as a mechanism
- interest in strategy-proof or truthful mechanisms: make a dominant strategy for the agents to reveal their true preferences

In CS

- Computational social choice (collective decisions) -> Algorithmic mechanism design (social welfare)
- Algorithmic Game Theory concerned with computational questions

Bibliography

- D. Gale and L.S. Shapley, College Admission and the Stability of Marriage. The American Mathematical Monthly, Vol. 69, No. 1. 1962
- D.E. Knuth. Stable Marriage and its Relation to Other Combinatorial Problems. American Mathematical Society, 1976 (translated to English 1997)
- D. Gusfield and R. Irving. The Stable Marriage Problem: Structure and Algorithms. MIT Press, 1989
- D.F. Manlove. Algorithmics of Matching Under Preferences. World Scientific, 2013.
- Videos on the Stable Marriage Problem by Numberphile, Featuring Dr Emily Riehl https://www.youtube.com/watch?v=Qcv1IqHWAzg https://www.youtube.com/watch?v=LtTV6rIxhdo
- http://optimalmatching.com/

Variants and Extensions

- Indifference in agents' lists, ie ties
- Incomplete/bounded lists
- Exchange stability: no pair of residents who could exchange one another's assigned hospitals so as to improve their outcome
- tripartite matching problem with preferences
- find all stable matchings
- find stable matching with other properties

Classification

- Bipartite matching problems with two-sided preferences
- Stable Marriage problem (SM)
- Hospitals Resident problem (HR) (many-one SM generalization)

Workers Firm problem, Student-Project Allocation problem
Optimality criteria: Stability: no two agents prefer another to one of their current assignees

- Bipartite matching problems with one-sided preferences
- House Allocation problem (HA)
- Capacited House Allocation Problem (CHA) (many-one HA generalization)

Optimality criteria: Pareto optimality, popularity, profile-based optimality

- Non-bipartite matching problems with preferences
- Stable Roommates problem (SR) chess players, kidney exchanges patient-donor, P2P network
- Stable Fixtures, S. Multiple Activities, S. Allocation (many-many)
- Coalition Formation Game (partnerships of size >2)

Optimality criteria: Stability

Matching under Preferences

Marco Chiarandini
Lektor

Department of Mathematics \& Computer Science
University of Southern Denmark

