Mathematical Optimization

Marco Chiarandini

Institut for Matematik og Datalogi (IMADA)

October 25, 2018
MatØk Studiepratik

Operations Research

Operation Research (aka, Management Science, Analytics):

- the discipline that uses a scientific approach to decision making.
- It seeks to determine how best to design and operate a system, usually under conditions requiring the allocation of scarce resources, by means of mathematics and computer science.
- Quantitative methods for planning and analysis.

Applications:

- Transport
- Supply Chains
- Sport
- Finance
- Government
- Manufacturing

Today’s Objectives

- Convert a problem from ordinary language into mathematical language
- Solve geometrically a system of linear inequalities and connect the solutions to the real world problem
- Distinguish Linear vs Non-linear, Continuous vs Integer problems
- Solve numerically the problems in Google Sheets and Microsoft Excel
- Applications: production planning, diet planning, budget allocation
\rightsquigarrow Transmit to you my fascination for Mathematical Optimization

1. Production Planning
2. Diet Problem
3. Budget Allocation
4. Summary

Outline

1. Production Planning
2. Diet Problem
3. Budget Allocation
4. Summary

Production Planning

Suppose a company produces only tables and chairs.
A table is made of 2 large Lego pieces and 2 small pieces, while a chair is made of 1 large and 2 small pieces.
The resources available are 8 small and 6 large pieces.

A table

A chair

The profit for a table is 1600 dkk and for a chair 1000 dkk . What product mix maximizes the company's profile using the available resources?

	Tables	Chairs	Capacity
Small Pieces	2	2	8
Large Pieces	2	1	6
Profit	16	10	

Decision Variables

$$
\begin{aligned}
& x_{1} \geq 0 \text { units of small pieces } \\
& x_{2} \geq 0 \text { units of large pieces }
\end{aligned}
$$

Object Function

$$
\max 16 x_{1}+10 x_{2} \text { maximize profit }
$$

Constraints

$$
\begin{aligned}
& 2 x_{1}+2 x_{2} \leq 8 \text { small pieces capacity } \\
& 2 x_{1}+x_{2} \leq 6 \text { large pieces capacity }
\end{aligned}
$$

Materials A and B
Products 1 and 2

$$
\begin{aligned}
\max 16 x_{1}+10 x_{2} & \\
2 x_{1}+2 x_{2} & \leq 8 \\
2 x_{1}+x_{2} & \leq 6 \\
x_{1} & \geq 0 \\
x_{2} & \geq 0
\end{aligned}
$$

Graphical Representation:

Resource Allocation - General Model

Managing a production facility

$$
\begin{aligned}
& \max c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}+\ldots+c_{n} x_{n}=z \\
& \text { s.t. } a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\ldots+a_{1 n} x_{n} \leq b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\ldots+a_{2 n} x_{n} \leq b_{2} \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+a_{m 3} x_{3}+\ldots+a_{m n} x_{n} \leq b_{m} \\
& x_{1}, x_{2}, \ldots, x_{n} \geq 0
\end{aligned}
$$

$$
\begin{aligned}
\max \quad \sum_{j=1}^{n} c_{j} x_{j} & \\
\sum_{j=1}^{n} a_{i j} x_{j} & \leq b_{i}, \quad i=1, \ldots, m \\
x_{j} & \geq 0, \quad j=1, \ldots, n
\end{aligned}
$$

$$
\begin{aligned}
c^{T}=\left[\begin{array}{llll}
c_{1} & c_{2} & \ldots & c_{n}
\end{array}\right] \\
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & & & \\
a_{31} & a_{32} & \ldots & a_{m n}
\end{array}\right], x=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
\vdots \\
x_{n}
\end{array}\right], b=c^{T} x \\
x \geq 0
\end{aligned}
$$

$$
\begin{aligned}
& \max \quad c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}+\ldots+c_{n} x_{n}=z \\
& \text { s.t. } a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\ldots+a_{1 n} x_{n} \leq b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\ldots+a_{2 n} x_{n} \leq b_{2} \\
& \begin{aligned}
a_{m 1} x_{1}+a_{m 2} x_{2}+a_{m 3} x_{3}+\ldots+a_{m n} x_{n} & \leq b_{m} \\
x_{1}, x_{2}, \ldots, x_{n} & \geq 0
\end{aligned}
\end{aligned}
$$

Vector and Matrices in Excel

$$
\sum_{j=1}^{n} c_{j}=c_{1}+c_{2}+\ldots+c_{n}
$$

SUM(B5: B14)

Scalar product

$$
\begin{aligned}
\vec{u} \cdot \vec{v} & =u_{1} v_{1}+u_{2} v_{2}+\ldots+u_{n} v_{n} \\
& =\sum_{j=1}^{n} u_{j} v_{j}
\end{aligned}
$$

SUMPRODUCT(B5: B14, C5: C : 14)

$$
\begin{aligned}
& \max \quad \sum_{j=1}^{n} c_{j} x_{j} \\
& \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}, \quad i=1, \ldots, m \\
& x_{j} \geq 0, \quad j=1, \ldots, n
\end{aligned}
$$

$\max c^{\top} x$

$$
A x \leq b
$$

$$
x \geq 0
$$

$$
x \in \mathbb{R}^{n}, c \in \mathbb{R}^{n}, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}
$$

$$
\begin{aligned}
\max 16 x_{1}+10 x_{2} & \\
2 x_{1}+2 x_{2} & \leq 8 \\
2 x_{1}+x_{2} & \leq 6 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

$$
\max \left[\begin{array}{ll}
16 & 10
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

$$
\left[\begin{array}{ll}
2 & 2 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \leq\left[\begin{array}{l}
8 \\
6
\end{array}\right]
$$

$$
x_{1}, x_{2} \geq 0
$$

1．Production Planning

2．Diet Problem

3．Budget Allocation

4．Summary

The Diet Problem (Blending Problems)

- Select a set of foods that will satisfy a set of daily nutritional requirement at minimum cost.
- Motivated in the 1930s and 1940s by US army.
- Formulated as a linear programming problem by George Stigler
- First linear programming problem
- (programming intended as planning not computer code)

min cost/weight
subject to nutrition requirements:
eat enough but not too much of Vitamin A eat enough but not too much of Sodium eat enough but not too much of Calories

The Diet Problem

Suppose there are:

- 3 foods available, corn, milk, and bread,
- there are restrictions on the number of calories (between 2000 and 2250) and the amount of Vitamin A (between 5000 and 50,000)

Food	Corn	2% Milk	Wheat bread
Vitamin A	107	500	0
Calories	72	121	65
Cost per serving	$\$ 0.18$	$\$ 0.23$	$\$ 0.05$

```
Parameters (given data)
    F = set of foods
    N = set of nutrients
    aij = amount of nutrient j in food i,\foralli\inF,\forallj\inN
    ci}=\mathrm{ cost per serving of food i,}\foralli\in
    F
    F}\mp@subsup{F}{maxi}{}=\mathrm{ maximum allowable number of servings of food i,}\foralli\in
    N Ninj }=\mathrm{ minimum required level of nutrient j,},\forallj\in
    Nmaxj = maximum allowable level of nutrient j,\forallj\inN
```

Decision Variables
$x_{i}=$ number of servings of food i to purchase/consume, $\forall i \in F$

The Mathematical Model

Objective Function: Minimize the total cost of the food

$$
\operatorname{Minimize} \sum_{i \in F} c_{i} x_{i}
$$

Constraint Set 1: For each nutrient $j \in N$, at least meet the minimum required level

$$
\sum_{i \in F} a_{i j} x_{i} \geq N_{\operatorname{minj}}, \quad \forall j \in N
$$

Constraint Set 2: For each nutrient $j \in N$, do not exceed the maximum allowable level.

$$
\sum_{i \in F} a_{i j} x_{i} \leq N_{\max j}, \quad \forall j \in N
$$

Constraint Set 3: For each food $i \in F$, select at least the minimum required number of servings

$$
x_{i} \geq F_{\operatorname{mini}}, \quad \forall i \in F
$$

Constraint Set 4: For each food $i \in F$, do not exceed the maximum allowable number of servings.

$$
x_{i} \leq F_{\operatorname{maxi}}, \quad \forall i \in F
$$

system of equalities and inequalities

$$
\begin{aligned}
\min \sum_{i \in F} c_{i} x_{i} & \\
\sum_{i \in F} a_{i j} x_{i} \geq N_{\operatorname{minj} j}, & \forall j \in N \\
\sum_{i \in F} a_{i j} x_{i} \leq N_{\max j}, & \forall j \in N \\
x_{i} \geq F_{\min i}, & \forall i \in F \\
x_{i} \leq F_{\max i}, & \forall i \in F
\end{aligned}
$$

The History of Stigler's Diet Problem

- The linear program consisted of 9 equations in 77 variables
- Stigler, guessed an optimal solution using a heuristic method
- In 1947, the National Bureau of Standards used the newly developed simplex method to solve Stigler's model.
It took 9 clerks using hand-operated desk calculators 120 man days to solve for the optimal solution

Geometrical Interpretation

Geometrically the feasibility region of a linear programming problem with 3 variables is a polyhedron.

The generalization of a polyhedron in n dimensions is called polytope.

Growth Functions

NP-hard problems: bad if we have to solve them, good for cryptology

1. Production Planning

2. Diet Problem
3. Budget Allocation
4. Summary

Budget Allocation

- A company has six different opportunities to invest money.
- Each opportunity requires a certain investment over a period of 6 years or less.

Expected Investment Cash Flows and Net Present Value							
	Opp. 1	Opp. 2	Opp. 3	Opp. 4	Opp. 5	Opp. 6	
Year 1	$-\$ 5.00$	$-\$ 9.00$	$-\$ 12.00$	$-\$ 7.00$	$-\$ 20.00$	$-\$ 18.00$	
Year 2	$-\$ 6.00$	$-\$ 6.00$	$-\$ 10.00$	$-\$ 5.00$	$\$ 6.00$	$-\$ 15.00$	
Year 3	$-\$ 16.00$	$\$ 6.10$	$-\$ 5.00$	$-\$ 20.00$	$\$ 6.00$	$-\$ 10.00$	
Year 4	$\$ 12.00$	$\$ 4.00$	$-\$ 5.00$	$-\$ 10.00$	$\$ 6.00$	$-\$ 10.00$	
Year 5	$\$ 14.00$	$\$ 5.00$	$\$ 25.00$	$-\$ 15.00$	$\$ 6.00$	$\$ 35.00$	
Year 6	$\$ 15.00$	$\$ 5.00$	$\$ 15.00$	$\$ 75.00$	$\$ 6.00$	$\$ 35.00$	
NPV	$\$ 8.01$	$\$ 2.20$	$\$ 1.85$	$\$ 7.51$	$\$ 5.69$	$\$ 5.93$	

- The company wants to invest in those opportunities that maximize the combined Net Present Value (NPV).
- It also has an investment budget that needs to be met for each year.

Net Present Value

- P : value of the original payment presently due
- the debtor wants to delay the payment for t years,
- let r be the market rate of return on a similar investment asset
- the future value of P is $F=P(1+r)^{t}$

Viceversa, consider the task of finding:

- the present value P of $\$ 100$ that will be received in five years, or equivalently,
- which amount of money today will grow to $\$ 100$ in five years when subject to a constant discount rate.

Assuming a 5\% per year interest rate, it follows that

$$
P=\frac{F}{(1+r)^{t}}=\frac{\$ 100}{(1+0.05)^{5}}=\$ 78.35 .
$$

Budget Allocation

Net Present Value calculation:
for each opportunity we calculate the NPV at time zero (the time of decision) as:

$$
P_{0}=\sum_{t=1}^{5} \frac{F_{t}}{(1+0.05)^{5}}
$$

Expected Investment Cash Flows and Net Present Value							

Budget Allocation - Mathematical Model

- Let B_{t} be the budget available for investments during the years $t=1 . .5$.
- Let $a_{t j}$ be the cash flow for opportunity j and c_{j} its NPV
- Task: choose a set of opportunities such that the budget is never exceeded and the expected return is maximized. Consider both the case of indivisible and divisible opportunities.

Variables $x_{j}=1$ if opportunity j is selected and $x_{j}=0$ otherwise, $j=1 . .6$
Objective

$$
\max \sum_{j=1}^{6} c_{j} x_{j}
$$

Constraints

$$
\sum_{j=1}^{6} a_{t j} x_{j}+B_{t} \geq 0 \quad \forall t=1 . .5
$$

1．Production Planning
2．Diet Problem
3．Budget Allocation
4．Summary

Mathematical Modeling

- Find out exactly what the decision makers need to know:
- which investment?
- which product mix?
- which job j should a person i do?
- Define Decision Variables of suitable type (continuous, integer valued, binary) corresponding to the needs
- Formulate Objective Function computing the benefit/cost
- Formulate mathematical Constraints indicating the interplay between the different variables.

Recognize linear and non linear functions and continuous and integer variables.

- Geometrical interpretation of the simplex method
- Touched computational issues
- Computer carries out the operations, hence programming needed
- Practical experience with Spreadsheets

Summary

1. Production Planning
2. Diet Problem
3. Budget Allocation
4. Summary
