Outline Introduction Analysis of Heuristics Algorithm Comparisons Performance Modelling Summary

Introduction

Analysis of Heuristics CAPM

Performance Modelling

2

4

Optimization Heuristics

### Outline

1. Introduction

CAPM

ANOVA

Optimization Heuristics 2. Analysis of Optimization Heuristics Theoretical Analysis

3. Tools and Techniques for Algorithm Configuration

Empirical Analysis Scenarios of Analysis

Regression Trees Racing methods

Search Methods

4. Performance Modelling Run Time Solution Quality

**Response Surface Methods** 

### **Empirical Methods for the Analysis of Optimization Heuristics**

#### Marco Chiarandini

Department of Mathematics and Computer Science University of Southern Denmark, Odense, Denmark www.imada.sdu.dk/~marco www.imada.sdu.dk/~marco/COMISEF08

#### October 16, 2008 COMISEF Workshop

### Outline

#### 1. Introduction

CAPM Optimization Heuristics

#### 2. Analysis of Optimization Heuristics

Theoretical Analysis Empirical Analysis Scenarios of Analysis

#### 3. Tools and Techniques for Algorithm Configuration

ANOVA Regression Trees Racing methods Search Methods Response Surface Methods

#### 4. Performance Modelling

Run Time Solution Qualit

#### 5. Summary

#### Outline Introduction Analysis of Heuristics CAPM Algorithm Comparisons Performance Modelling Summary

### Outline

훈 =

#### 1. Introduction

5. Summary

CAPM Optimization Heuristics

#### 2. Analysis of Optimization Heuristics

Theoretical Analysis Empirical Analysis Scenarios of Analysis

#### 3. Tools and Techniques for Algorithm Configuration

ANOVA Regression Trees Racing methods Search Methods Response Surface Method

#### 4. Performance Modelling

Run Time Solution Quality

# Capital Asset Pricing Model (CAPM)

Tool for pricing an individual asset  $\boldsymbol{i}$ 

 $\begin{array}{ll} \mbox{Individual security's} & = \beta_i \cdot & \mbox{Market's securities} \\ \mbox{reward-to-risk ratio} & = \beta_i \cdot & \mbox{market's securities} \end{array}$ 

$$(E(R_i) - R_f) = \beta_i \cdot (E(R_m) - R_f)$$

 $\beta_i$  sensitivity of the asset returns to market returns

Under normality assumption and least squares method:

$$\beta_i = \frac{\operatorname{Cov}(R_i, R_m)}{\operatorname{Var}(R_m)}$$

Alternatively:

$$R_{it} - R_{ft} = \beta_0 + \beta_1 \cdot (R_{mt} - R_{ft})$$

Use more robust techniques than least squares to determine  $\beta_0$  and  $\beta_1$ 

[Winker, Lyra, Sharpe, 2008]

글 =



Introduction

Analysis of Heuristics CAPM

**Optimization Heuristics** 



Optimize non-differentiable, nonlinear and multimodal cost functions. No analytical methods **>** optimization heuristics

# Least Median of Squares

$$Y_t = \beta_0 + \beta_1 X_t + \epsilon_t$$
$$\epsilon_t^2 = \left(Y_t - \beta_0 - \beta_1 X_t\right)^2$$

least squares method:

$$\min \sum_{t=1}^n \epsilon_t^2$$

least median of squares method:

 $\min\left\{ \operatorname{median}\left[ \varepsilon_{t}^{2}\right] \right\}$ 

Outline Introduction Analysis of Heuristics Algorithm Comparisons Performance Modelling Summary





훈 =

#### Outline Introduction Analysis of Heuristics Algorithm Comparisons Performance Modelling Summary

# **Optimization Heuristics**

Outline Introduction Analysis of Heuristics Algorithm Comparisons Performance Modelling Summary

## Introduction CAPM Optimization Heuristics Analysis of Optimization Heuristics Theoretical Analysis Empirical Analysis Scenarios of Analysis Tools and Techniques for Algorithm Configuration ANOVA Regression Trees Racing methods Search Methods Performance Modelling Bun Time

Solution Quality

#### 5. Summary

-212

Outline

흔゠

10

Outline Introduction Analysis of Heuristics Algorithm Comparisons Performance Modelling Summary

# Nelder-Mead

Nelder-Mead simplex method [Nelder and Mead, 1965]:



- points are ordered  $f(x_1) \leq \ldots \leq f(x_{p+1})$
- At each iteration replace x<sub>p+1</sub> with a better point among proposed z<sub>i</sub>, i = 1,..., p + 3 constructed as shown



Introduction

CAPM

Optimization Heuristics

### Nelder-Mead

### Nelder-Mead simplex method [Nelder and Mead, 1965]:

### Example:



- E | =

12

### Generation of Initial Solutions

Outline Introduction Analysis of Heuristics Algorithm Comparisons Performance Modelling Summary

#### Point generators:

Left: Uniform random distribution (pseudo random number generator) Right: Quasi-Monte Carlo method: low discrepancy sequence generator [Bratley, Fox, and Niederreiter, 1994].



(for other methods see spatial point process from spatial statistics)  $\mathbb{R}$ 



#### Proposal mechanism

The next candidate point is generated from a Gaussian Markov kernel with scale proportional to the actual temperature.

#### Annealing schedule

logarithmic cooling schedule 
$$T = \frac{T_0}{\ln(\lfloor \frac{i-1}{I_{max}} \rfloor I_{max} + e)}$$
 [Belisle (1992, p. 890)]

### Simulated Annealing

Outline Introduction Analysis of Heuristics Algorithm Comparisons Performance Modelling Summary

determine initial candidate solution sset initial temperature  $T = T_0$ while termination condition is not satisfied **do** while keep T constant, that is,  $T_{max}$  iterations not elapsed **do** probabilistically choose a neighbor s' of s

using proposal mechanism

accept s' as new search position with probability:

$$p(T, s, s') := \begin{cases} 1 & \text{if } f(s') \le f(s) \\ \exp \frac{f(s) - f(s')}{T} & \text{otherwise} \end{cases}$$

\_ update T according to annealing schedule

(프) =

13

Outline Introduction Analysis of Heuristics gorithm Comparisons erformance Modelling

### **Differential Evolution**

#### Differential Evolution (DE)

determine initial population  ${\cal P}$  while termination criterion is not satisfied  ${\rm do}$ 

- for each solution x of P do generate solution u from three solutions of P by mutation generate solution v from u by recombination with solution xselect between x and v solutions
- Solution representation:  $x = (x_1, x_2, \dots, x_p)$

Mutation:

 $u = r_1 + F \cdot (r_2 - r_3)$   $F \in [0, 2]$  and  $(r_1, r_2, r_3) \in P$ 

Recombination:

$$v_j = \begin{cases} u_j & \text{if } p < CR \text{ or } j = r \\ x_j & \text{otherwise} \end{cases}$$
  $j = 1, 2, \dots, p$ 

**Selection**: replace x with v if f(v) is better

## **Differential Evolution**



[http://www.icsi.berkeley.edu/~storn/code.html K. Price and R. Storn, 1995]

Introduction

Analysis of Heuristics

CAPM

**Optimization Heuristics** 

Introduction

CAPM

Algorithm Comparisons Optimization Heuristics

Analysis of Heuristics

Performance Modelling

# In the CAPM Case Study

Two research questions:

- 1. Optimization problem
- 2. Prediction problem (model assessment)

#### They require different ways to evaluate.

- 1. Given the model, find algorithm that yields best solutions. NM vs SA vs DE
- 2. Given that we can solve/tune the model effectively, find the model that yields best predictions

Least squares method  $\mathit{vs}$  Least median of squares method CAPM  $\mathit{vs}$  others

## Dealing with Uncertainty



Model reality at best without constraints imposed by mathematical complexity

-E =

Outline Introduction Analysis of Heuristics Algorithm Comparisons Performance Modelling Summary

Introduction

CAPM

**Optimization Heuristics** 

Analysis of Heuristics

Algorithm Comparisons

### Test Data

- ▶ Data from the Dow Jones Industrial Average, period 1970-2006.
- Focus on one publicly traded stock
- Use windows of 200 days: |9313/200| = 46
- $\blacktriangleright$  Each window is an instance from which we determine  $\alpha$  and  $\beta$



훈 ㅋ

20

### K-Fold Cross Validation

Outline Introduction Analysis of Heuristics CAPM Algorithm Comparisons **Optimization Heuristics** Performance Modelling Summary Outline Introduction Analysis of Heuristics Algorithm Comparisons Performance Modelling Summary

[Stone, 1974]

| 1 goar is e | 2        | prediction | error. | К        |
|-------------|----------|------------|--------|----------|
| Training    | Training | Training   | Test   | Training |

1. select kth part for testing

If real is actimating prediction array

- 2. train on the other K-1 parts for
- 3. calculate prediction error of the fitted model on the kth part
- 4. Repeat for k = 1, ..., K times and combine the K estimates of prediction error

#### .ē | =

### Outline

#### 1. Introduction

CAPM Optimization Heuristics

#### 2. Analysis of Optimization Heuristics

#### Theoretical Analysis

Empirical Analysis Scenarios of Analysis

#### 3. Tools and Techniques for Algorithm Configuration

ANOVA Regression Trees Racing methods Search Methods Response Surface Method

#### 4. Performance Modelling

Run Time Solution Qualit

#### 5. Summary

Introduction Analysis of Heuristics Algorithm Comparisons Performance Modelling Summary

## Outline

### 1. Introduction

Optimization Heuristics

#### 2. Analysis of Optimization Heuristics

Theoretical Analysis Empirical Analysis Scenarios of Analysis

#### 3. Tools and Techniques for Algorithm Configuration

ANOVA Regression Trees Racing methods Search Methods Response Surface Methods

#### 4. Performance Modelling

Run Time Solution Quality

#### 5. Summary

22

Outline Introduction Analysis of Heuristics Algorithm Comparisons Performance Modelling

### Mathematical analysis

Through Markov chains modelling some versions of SA, evolutionary algorithms, ant colony optimization can be made to converge with probability 1 to the best possible solutions in the limit [Michiels et al., 2007].

Convergency theory is often derived by sufficient decrease.  $x_c$  current solution x': trial solution

 $\begin{array}{ll} \text{simple decrease} & x = x' & \text{if } f(x') < f(x_c) \\ \text{sufficient decrease} & x = x_c & \text{if } f(x_c) - f(x') < \epsilon \end{array}$ 

25

### Mathematical analysis

- Convergence rates on mathematically tractable functions or with local approximations [Beyer, 2001; Bäck and Hoffmeister, 2004].
- Identification of heuristic component such that they are, for example, "functionally equivalent" to linear transformation of the data of the instance [Birattari et al., 2007]
- Analysis of run time until reaching optimal solution with high probability on pseudo-boolean functions ((1+1)EA, ACO) [Gutjahr, 2008][Dorste et al. 2002, Neumann and Witt, 2006].
- ▶ No Free Lunch Theorem: For all possible performance measures, no algorithm is better than another when its performance is averaged over all possible discrete functions [Wolpert and Macready, 1997].

#### 훈 ㅋ

**Experimental Algorithmics** 



In empirical studies we consider simulation programs which are the implementation of a mathematical model (the algorithm)

Analysis of Heuristics Empirical Analysis

Theoretical Analysis

Scenarios of Analysis

Introduction

ance Modelling

Theoretical Analysis

Scenarios of Analysis

Empirical Analysis

Analysis of Heuristics

[McGeoch (1996), Toward an Experimental Method for Algorithm Simulation]

Algorithmic models of programs can vary according to their level of instantiation:

- minimally instantiated (algorithmic framework), e.g., simulated annealing
- mildly instantiated: includes implementation strategies (data structures)
- highly instantiated: includes details specific to a particular programming language or computer architecture

### Outline

#### Introduction Theoretical Analysis Analysis of Heuristics Empirical Analysis Scenarios of Analysis ormance Modelling

#### 1. Introduction

#### 2. Analysis of Optimization Heuristics

**Empirical Analysis** 

#### 3. Tools and Techniques for Algorithm Configuration

#### 4. Performance Modelling

**Experimental Algorithmics** 

#### 5. Summary

훈 =

27

Introduction Theoretical Analysis Analysis of Heuristics Empirical Analysis Scenarios of Analysis

[Theoretician's Guide to the Experimental Analysis of Algorithms D.S. Johnson, 2002]

Do publishable work:

Tie your paper to the literature

(if your work is new, create benchmarks).

- Use instance testbeds that support general conclusions.
- Ensure comparability.

Efficient:

- Use efficient and effective experimental designs.
- Use reasonably efficient implementations.

#### Convincing:

- Statistics and data analysis techniques
- Ensure reproducibility
- Report the full story.
- Draw well-justified conclusions and look for explanations.
- Present your data in informative ways.

## Goals of Computational Experiments

[Theoretician's Guide to the Experimental Analysis of Algorithms D.S. Johnson, 2002]

As authors, readers or referees, recognize the goal of the experiments and check that the methods match the goals

- To use the code in a particular application. (Application paper) [Interest in output for feasibility check rather than efficiency.]
- To provide evidence of the superiority of your algorithm ideas. (Horse race paper) [Use of benchmarks.]
- To better understand the strengths, weaknesses, and operations of interesting algorithmic ideas in practice. (Experimental analysis paper)
- To generate conjectures about average-case behavior where direct probabilistic analysis is too hard. (Experimental average-case paper)

#### -212

# Definitions

For each general problem  $\Pi$  (e.g., TSP, CAPM) we denote by  $C_{\Pi}$  a set (or class) of instances and by  $\pi \in C_{\Pi}$  a single instance.

The object of analysis are randomized search heuristics (with no guarantee of optimality).

single-pass heuristics: have an embedded termination, for example, upon reaching a certain state

Eg, Construction heuristics, iterative improvement (eg, Nelder-Mead)

 asymptotic heuristics: do not have an embedded termination and they might improve their solution asymptotically

Eg., metaheuristics

### Outline

Theoretical Analysis

Scenarios of Analysis

Empirical Analysis

Analysis of Heuristics



#### 1. Introduction

CAPM Optimization Heuristics 2. Analysis of Optimization Heuristics Theoretical Analysis

#### Scenarios of Analysis

#### 3. Tools and Techniques for Algorithm Configuration

ANOVA Regression Trees Racing methods Search Methods Response Surface Methods

#### 4. Performance Modelling

Run Time Solution Quality

#### 5. Summary

-큰 i =

31

Theoretical Analysis

Scenarios of Analysis

Empirical Analysis

Analysis of Heuristics

nance Modelling

Outline Introduction Analysis of Heuristics Algorithm Comparisons Performance Modelling

Theoretical Analysis Empirical Analysis Scenarios of Analysis 32

### Scenarios

Univariate: Y

Asymptotic heuristics in which:

Y=X and time limit is an external parameter decided a priori

- Y=T and solution quality is an external parameter decided *a priori* (Value To be Reached, approximation error)
- Bivariate: Y = (X, T)
  - Single-pass heuristics
  - Asymptotic heuristics with idle iterations as termination condition
- Multivariate: Y = X(t)
  - Development over time of cost for asymptotic heuristics

### Generalization of Results

On a specific instance, the random variable Y that defines the performance measure of an algorithm is described by its probability distribution/density function

 $Pr(Y = y \mid \pi)$ 

Outline

mance Modelling

Introduction

Analysis of Heuristics

nance Modelling

Theoretical Analysis

Scenarios of Analysis

Empirical Analysis

Analysis of Heuristics I heoretical Analysis Empirical Analysis

Algorithm Comparisons Scenarios of Analysis

Theoretical Analysis

It is often more interesting to generalize the performance on a class of instances  $C_{\Pi}$ , that is,

$$Pr(Y = y, C_{\Pi}) = \sum_{\pi \in \Pi} Pr(Y = y \mid \pi) Pr(\pi)$$

훈 ㅋ

### Measures and Transformations

On a class of instances

#### Computational effort indicators

- ▶ process time (user + system time, no wall time). it is reliable if process takes > 1.0 seconds
- number of elementary operations/algorithmic iterations (e.g., search steps, cost function evaluations, number of visited nodes in the search tree, etc.)
- no transformation if the interest is in studying scaling
- no transformation if instances from an homogeneously class
- standardization if a fixed time limit is used
- geometric mean (used for a set of numbers whose values are meant to be multiplied together or are exponential in nature)

#### In experiments,

- 1. we sample the population of instances and
- 2. we sample the performance of the algorithm on each sampled instance

If on an instance  $\pi$  we run the algorithm r times then we have rreplicates of the performance measure Y, denoted  $Y_1, \ldots, Y_r$ , which are independent and identically distributed (i.i.d.), i.e.

$$Pr(y_1,\ldots,y_r|\pi) = \prod_{j=1}^r Pr(y_j \mid \pi)$$

$$Pr(y_1,\ldots,y_r) = \sum_{\pi \in C_{\Pi}} Pr(y_1,\ldots,y_r \mid \pi) Pr(\pi).$$

훈 =

35

Introduction Theoretical Analysis Analysis of Heuristics Empirical Analysis Scenarios of Analysis

Measures and Transformations

### On a class of instances

#### Solution quality indicators

Different instances  $\blacktriangleright$  different scales  $\blacktriangleright$  need for invariant measures

• Distance or error from a reference value (assume minimization):

$$e_1(x,\pi) = rac{x(\pi) - ar{x}(\pi)}{\widehat{\sigma}(\pi)}$$
 standard score

$$e_2(x,\pi) = rac{x(\pi) - x^{opt}(\pi)}{x^{opt}(\pi)}$$
 relative error

$$e_3(x,\pi) = \frac{x(\pi) - x^{opt}(\pi)}{x^{worst}(\pi) - x^{opt}(\pi)} \quad \text{invariant error [Zemel, 1981]}$$

- optimal value computed exactly or known by instance construction
- surrogate value such bounds or best known values
- Rank (no need for standardization but loss of information)

#### Introduction Theoretical Analysis Analysis of Heuristics Empirical Analysis Scenarios of Analysis

## Graphical Representation

#### Outline Introduction Analysis of Heuristics Algorithm Comparisons Performance Modelling Summary

# Graphical Representation

#### On a class of instances











### **Examples**

View of raw data within each instance





-E | =

39

#### Outline Introduction Analysis of Heuristics Algorithm Comparisons Performance Modelling Summary

### Examples

#### View of raw data aggregated for the 4 instances



#### **Original data**

40 - 트 | =

### Examples



Examples

훈 =

42

Theoretical Analysis

Scenarios of Analysis

Empirical Analysis

Analysis of Heuristics



# View of raw data ranked within instances and aggregated for the 4 instances

### Examples

훈 ㅋ

The trade off computation time vs sol quality. Solution quality ranked within the instances and computation time in raw terms



#### The trade off computation time vs sol quality. Raw data.



### Variance Reduction Techniques

Outline Introduction Analysis of Heuristics Igorithm Comparisons erformance Modelling

[McGeoch 1992]

- ► Same instances
- Same pseudo random seed
- Common quantity for every random quantity that is positively correlated with the algorithms

Variance of the original performance will not vary but the variance of the difference will decrease because covariance =0

Subtract out a source of random noise if its expectation is known and it is positively correlated with outcome (eg, initial solution, cost of simple algorithm)

$$X' = X + (R - E[R])$$

훈 =

훈 = 50

# Algorithm Configuration

Algorithm Comparisons Search Methods Performance Modelling Response Surface Methods

ANOVA

Regression Trees

Racing methods

Introduction

Analysis of Heuristics

- Which algorithm solves best our problem? (RRNM, SA, DE) (categorical)
- ▶ Which values should be assigned to the parameters of the algorithms? Eg, how many restarts of NM? Which temperature in SA? (numerical)
- ▶ How many times should we have random restart before chances to find better solutions become irrelevant? (numerical, integer)
- Which is the best way to generate initial solutions? (categorical) Theoretical motivated question: Which is the tradeoff point, where quasi random is not anymore helpful?
- ▶ Do instances that come from different applications of Least Median of Squares need different algorithm? (Instance families separation)
- ▶ ... 문 =

Work Done

48

ANOVA Introduction Regression Trees Racing methods Algorithm Comparisons Search Methods Performance Modelling

Response Surface Methods

49

51

- ANOVA
- Regression trees [Bartz-Beielstein and Markon, 2004]
- Racing algorithms [Birattari et al., 2002]
- Search approaches [Minton 1993, 1996, Cavazos & O'Boyle 2005], [Adenso-Diaz & Laguna 2006, Audet & Orban 2006][Hutter et al., 2007]
- ► Response surface models, DACE [Bartz-Beielstein, 2006; Ridge and Kudenko, 2007a,b]

### 1. Introduction

Outline

#### 2. Analysis of Optimization Heuristics

#### 3. Tools and Techniques for Algorithm Configuration

Outline

nce Modelling

Analysis of Heuristics Racing methods

Algorithm Comparisons Search Methods

ANOVA

ANOVA

Analysis of Heuristics

Algorithm Comparisons

Regression Trees

Racing methods

Search Methods

Response Surface Methods

Regression Trees

Response Surface Methods

Search Methods

#### 4. Performance Modelling

#### 5. Summary

큰 =

# Organization of the Experiments

### Questions:

- ▶ What (input, program) parameters to control?
- Which levels for each parameter?
- What kind of experimental design?
- How many sample points?
- ► How many trials per sample point?
- What to report?
- Sequential or one-shot trials?

Develop an experimental environment, run pilot tests



[i.i.d.  $N(0, \sigma_{\tau}^2)$ ] [i.i.d.  $N(0, \sigma^2)$ ]

#### 문 =

1. Introduction

Outline

#### 2. Analysis of Optimization Heuristics

# 3. Tools and Techniques for Algorithm Configuration

#### ANOVA

Search Methods

#### 4. Performance Modelling

#### 5. Summary

훈 ㅋ

# The Random Effect Design

ANOVA Regression Trees Racing methods m Comparisons Search Methods Response Surface Methods

#### Factors:

⟨-/-/n/r⟩

Instance: 10 instances randomly sampled from a class Replicates five runs of RRNM on the 10 instances from the class

#### Response:

Quality: solution cost or transformations thereof

 $Y_{il} = \mu + I_i + \varepsilon_{il},$ 

where

- $-\mu$  an overall mean,
- $-I_i$  a random effect of instance *i*,
- $-\varepsilon_{il}$  a random error for replication l

# Random

instance

factors

| ٧S | Bloc | king | Factors |  |
|----|------|------|---------|--|
|----|------|------|---------|--|

| Summary Response Surface Methods | Analysis of Heuristics<br>Algorithm Comparisons<br>Performance Modelling<br>Summary | Regression Trees<br>Racing methods<br>Search Methods<br>Response Surface Methods |
|----------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
|----------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|

Outline ANOVA

number of

runs

$$Y_{il} = \mu + I_i + \varepsilon_{il}$$

### Random

훈 =

큰 ㅋ

54

52

 $I_i$  a random effect of instance i

$$\begin{array}{rcl} Y_{il}|I_i & \sim & N(\mu+I_i,\sigma^2) \\ Y_{il} & \sim & N(\mu & ,\sigma^2+\sigma_I^2) \end{array}$$

We draw conclusions on the entire population of levels

 $\downarrow$ 

corresponds to looking at 
$$Pr(y)$$

Blocking  $\tau_i$  the fixed effect of instance *i* 

$$\begin{array}{rcl} Y_{il}|I_i & \sim & N(\mu+I_i,\sigma^2) \\ Y_{il} & \sim & N(\mu+I_i,\sigma^2) \end{array}$$

The results hold only for those levels tested

∜

corresponds to looking at  $Pr(y|\pi)$ 

55

53

#### Treatment factors:

Sources of Variance

- $A_1, A_2, \ldots, A_k$  algorithm factors: initial solution, temperature, ...
- $\blacktriangleright$   $B_1, B_2, \ldots, B_m$  instance factors: structural differences, application, size, hardness, ...

number of /

 $\langle -/m/n/1 \rangle \langle k/m/n/1 \rangle$ 

instances

 $\langle k/-/n/r \rangle$ 

- Controllable nuisance factors:
  - $I_1, I_2, \ldots, I_n$  single instances
  - algorithm replication

algorithm

factors

<-/-/n/1> (k/-/n/1)

## The Mixed Effects Design

Outline Introduction Analysis of Heuristics Algorithm Comparisons Performance Modelling Summary

[i.i.d.  $N(0, \sigma_{\tau}^2)$ ]

ANOVA

Regression Trees

Racing methods

Search Methods

Response Surface Methods

# Replicated or Unreplicated?

Outline Introduction Analysis of Heuristics Algorithm Comparisons Performance Modelling Summary New York Strategy Strates Response Surface Methods

#### ► Factors:

Algorithm:{RRNM,SA,DE}Instance:10 instances randomly sampled from a classReplicatesfive runs per algorithm on the 10 instances from the class

Response:

Quality: solution cost or transformations thereof

$$Y_{ijl} = \mu + A_j + I_i + \gamma_{ij} + \varepsilon_{ijl}$$

- $\mu$  an overall mean,
- $-A_j$  a fixed effect of the algorithm j,
- $-I_i$  a random effect of instance i,
- $\gamma_{ij}$  a random interaction instance–algorithm, [i.i.d.  $N(0, \sigma_{\gamma}^2)$ ]
- $\varepsilon_{ijl}$  a random error for replication l of alg. j on inst. i [i.i.d.  $N(0, \sigma^2)$ ]

**(**k/-/*n*/*r***)** 

Which is the best design?

```
3 runs \times 10 instances = 30 experiments
(replicated design) \langle k/-/n/r \rangle
```

OR

1 runs  $\times$  30 instances = 30 experiments (unreplicated design) (k/-/n/1)

#### If possible, $\langle k/-/n/1 \rangle$ is better:

- ▶ it minimizes the variance of the estimates [Birattari, 2004]
- blocking and random design correspond mathematically

큰 ㅋ

56

Outline Introduction Analysis of Heuristics Algorithm Comparisons Performance Modelling Regression Trees Racing methods Search Methods

 $\langle -/m/n/r \rangle$ 

## The Factorial Nested Design

- ► Factors:
  - Instance Factors:Application = {Random, Dow Jones}Instance:four instances randomly sampled from a classReplicates3 runs per algorithm on the 4 instances from the class
- ► Response:

Quality: solution cost or transformations thereof

$$Y_{ijl} = \mu + B_j + I_{i(j)} + \epsilon_{ijl}$$

- μ an overall mean,
- $B_j$  a fixed effect of the feature j,
- $\blacktriangleright$   $I_{i(j)}$  a random effect of the instance *i* nested in *j*
- $\varepsilon_{ijl}$  a random error for replication l on inst. i nested in j

# The Factorial Nested Design

문 =

**\-/***m*/*n*/*r***\** 

e Modelling

Algorithm Comparisons

Instance Factors:Application = {Random, Dow Jones}Instance:four instances randomly sampled from a classReplicates3 runs per algorithm on the 4 instances from the class

Response:

Quality: solution cost or transformations thereof

|              | <b>Class 1</b> (Random) |           |           |           | Cla       | ass 2 (D  | ow Jon    | es)       |
|--------------|-------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Instances    | 1                       | 2         | 3         | 4         | 5         | 6         | 7         | 8         |
| Observations | $Y_{111}$               | $Y_{121}$ | $Y_{131}$ | $Y_{141}$ | $Y_{251}$ | $Y_{261}$ | $Y_{271}$ | $Y_{281}$ |
|              | $Y_{112}$               | $Y_{122}$ | $Y_{132}$ | $Y_{142}$ | $Y_{252}$ | $Y_{262}$ | $Y_{272}$ | $Y_{282}$ |
|              | $Y_{113}$               | $Y_{123}$ | $Y_{133}$ | $Y_{143}$ | $Y_{253}$ | $Y_{263}$ | $Y_{273}$ | $Y_{283}$ |

#### 58

## An Example for CAPM



Study on Random Restart Nelder-Mead for CAPM

#### Factors:

| Factor         | Туре        | Levels                 |
|----------------|-------------|------------------------|
| initial.method | Categorical | {random, quasi-random} |
| max.reinforce  | Integer     | $\{1;3;5\}$            |
| alpha          | Real        | $\{0.5;1;1.5\}$        |
| beta           | Real        | $\{0; 0.5; 1\}$        |
| gamma          | Real        | $\{1.5;2;2.5\}$        |

**Instances:** 20 randomly sampled from the Dow Jones application **Replicates:** only one per instance

#### **Response measures**

- time is similar for all configurations because we stop after 500 random restart
- measure solution cost

-클 | =



Analysis of Heuristics Algorithm Comparisons Performance Modelling Summary



- Main problem is heteroschdasticity
- Possible transformations: ranks + likelihood based Box-Cox
- Only max.reinforce is not significant, all the rest is



jitter(as.numeric(RRNM\$ind))





훈 =

59



ANOVA

Algorithm Comparisons

nce Modelling

Regression Trees

Racing methods

Search Methods

Response Surface Methods

Outline

Analysis of Heuristics

ance Modelling

Algorithm Comparisons

ANOVA

Regression Trees

Racing methods

Search Methods

Response Surface Methods



훈 =

63

### Outline

#### 1. Introduction

#### 2. Analysis of Optimization Heuristics

#### 3. Tools and Techniques for Algorithm Configuration

Racing methods

#### 4. Performance Modelling

#### 5. Summary

65

### **Regression Trees**

Recursive partitioning: Some history: AID, [Morgan and Sonquist, 1963], CHAID [Kass 1980], CART [Breiman, Friedman, Olshen, and Stone 1984] C4.5 [Quinlan 1993].

#### Conditional inference trees estimate a regression relationship by binary recursive partitioning in a conditional inference framework.

[Hothorn, Hornik, and Zeileis, 2006]

Introduction

Analysis of Heuristics

Algorithm Comparisons

Performance Modelling

ANOVA

Regression Trees

Racing methods

Search Methods

Response Surface Methods

Step 1: Test the global null hypothesis of independence between any of the input variables and the response. **Stop** if this hypothesis cannot be rejected.

> **Otherwise** test for the partial null hypothesis of a single input variable and the response.

Select the input variable with most important *p*-value

- Step 2: Implement a binary split in the selected input variable.
- Step 3: Recursively repeat steps 1) and 2).

64

66

ANOVA Introduction Regression Trees Analysis of Heuristics Racing methods Algorithm Comparisons formance Modelling Search Methods Response Surface Methods

Outline

#### 1. Introduction

#### 2. Analysis of Optimization Heuristics

#### 3. Tools and Techniques for Algorithm Configuration

#### **Regression Trees**

#### 4. Performance Modelling

Example: RRNM for CAPM

#### 5. Summary

훈 ㅋ



### **Racing Methods**

(k/-/n/1)

ANOVA

Algorithm Comparisons

nance Modelling

Regression Trees

Racing methods

Search Methods

Response Surface Methods

- Idea from model selection problem in machine learning
- Sequential testing: configurations are discarded as soon as statistical evidence arises
- Based on full factorial design

Procedure Race [Birattari, 2005]:

#### repeat

Randomly select an unseen instance

Execute all candidates on the chosen instance

Compute *all-pairwise comparison* statistical tests

Drop all candidates that are significantly inferior to the best algorithm until only one candidate left or no more unseen instances ;

Statistical tests:

- t test, Friedman 2-ways analysis of variance (F-Race)
- all-pairwise comparisons = p-value adjustment (Holm, Bonferroni)

훈 ㅋ





# Example: RRNM for CAPM

Race name......NM for Least Median of Squares Number of candidates.....162 Number of available tasks......45 Statistical test.....Friedman test Tasks seen before discarding......5 Initialization function.....ok Parallel Virtual Machine.....no

#### x No test is performed.

- The test is performed and some candidates are discarded.

= The test is performed but no candidate is discarded.

| +-+    | +    |       |      |           | +          |
|--------|------|-------|------|-----------|------------|
| · ·    | Task | Alive | Best | Mean best | Exp so far |
| x      | 1    | 162   | 81   | 2.869e-05 | 162        |
| <br> x | 4    | 162   | 140  | 2.887e-05 | 648        |
| -      | 5    | 52    | 140  | 3.109e-05 | 810        |
| =      | 6    | 52    | 34   | 3.892e-05 | 862        |
| <br> = | 45   | 13    | 32   | 4.55e-05  | 1742       |
| +-+    | +    |       |      |           | +          |

67

315

ANOVA Introduction Regression Trees Racing methods Algorithm Comparisons Search Methods Performance Modelling Response Surface Methods

### **Race Extension**

Selected candidate:

Full factorial design is still costly ➡ Simple idea: random sampling design

32 mean value: 4.55e-05

- Step 1: Sample  $N_{max}$  points in the parameter space according to a prior probability  $P_X$  (d-variate uniform distribution).
- Step 2: Execute the race
- Step 3:  $P_X$  becomes a sum of normal

distributions centered around each N survivors with parameters:  $\mu_s = (\mu_{s_1}, \dots, \mu_{s_d})$  and  $\sigma_s = (\sigma_{s_1}, \dots, \sigma_{s_d})$ At each iteration t reduce the variance:  $\sigma_{sk}^t = \sigma_{sk}^{t-1} (\frac{1}{N})^{\frac{1}{d}}$ Sample each of  $N_{max} - N^s$  points from the parameter space:

a) select a d-variate normal distribution  $N(\mu_s, \sigma_s)$  with probability

$$P_z = \frac{N^s - z + 1}{N^s (N^s + 1)/2}, \qquad \text{zis rank of } s$$

b) sample the point from this distribution

Outline ANOVA Introduction Regression Trees Algorithm Comparisons Performance Modelling Search Methods Summary Response Surface Methods

ANOVA

alysis of Heuristics

Algorithm Comparisons

Regression Trees

Racing methods

Search Methods

Response Surface Methods

Initial conditions linked to parameters

$$\sigma_{sk}^2 = \frac{max_k - min_k}{2}$$

Stopping conditions for intermediate races:

- when  $N_{min}$  (= d) configurations remain
- when computational budget B is finished  $(B = \frac{B_{tot}}{5})$
- ► *I<sub>max</sub>* instances seen

-212

The ParamILS Heuristic

The Tuning problem is a Mixed variables stochastic optimization problem

 $[{\rm Hutter,\ Hoos,\ and\ Stützle,\ 2007}]$  The space of parameters  $\Theta$  is discretized and a combinatorial optimization problem solved by means of iterated local search

#### Procedure ParamILS

 $\begin{array}{l} \mbox{Choose initial parameter configuration } \theta \in \Theta \\ \mbox{Perform subsidiary local search from } \theta \\ \mbox{while time left } \mbox{do $o$} \\ \mbox{|} \quad \theta' := \theta \mbox{ perform perturbation on } \theta \\ \end{array}$ 

perform subsidiary local search from  $\theta$ 

```
based on acceptance criterion,
keep \theta or revert \theta := \theta'
```

with probability  $P_R$  restart from a new  $\theta$  from  $\Theta$ 

### Outline



### 1. Introduction

CAPM Optimization Heuristics 2. Analysis of Optimization Heuristics Theoretical Analysis Empirical Analysis

#### 3. Tools and Techniques for Algorithm Configuration

ANOVA Regression Trees Racing methods Search Methods Response Surface Method

4. Performance Modelling

Run Time Solution Quality

#### 5. Summary

ParamILS

71

Analysis of Heuristics Algorithm Comparisons Performance Modelling Summary

72

### ParamILS components:

- Initialization: Pick a configuration (θ<sub>1</sub>,...,θ<sub>p</sub>) ∈ Θ according to *d*-variate uniform distribution.
- Subsidiary local search: iterative first improvement, change one parameter in each step
- ▶ Perturbation: change *s* randomly chosen parameters
- Acceptance criterion: always select better local optimum

### ParamILS

Outline Analysis of Heuristics Analysis of Heuristics Analysis of Heuristics Algorithm Comparisons Search Methods formance Modelling Response Surface Methods

## Observation

ANOVA Introduction Regression Trees Analysis of Heuristics Algorithm Comparisons Search Methods Racing methods Performance Modelling Response Surface Methods

Evaluation of a parameter configuration  $\theta$ :

- ▶ Sample N instances from given set (with repetitions)
- ▶ For each of the N instances:
  - Execute algorithm with configuration  $\theta$
  - Record scalar cost of the run (user-defined: e.g. run-time, solution) quality, ...)
- Compute scalar statistic  $c_N(\theta)$  of the N costs (user-defined: e.g. empirical mean, median, ...)

Note: N is a crucial parameter. In an enhanced version,  $N(\theta)$  is increased for good configurations and decreased for bad ones at run-time.

훈 ㅋ

75

Outline

#### 1. Introduction

#### 2. Analysis of Optimization Heuristics

Theoretical Analysis

#### 3. Tools and Techniques for Algorithm Configuration

#### **Response Surface Methods**

#### 4. Performance Modelling

#### 5. Summary

- > All algorithms solving these problems have parameters in their own and tuning them is paradoxical
- It is crucial finding methods that minimize the number of evaluations

훈 ㅋ

ANOVA Introduction Regression Trees Racing methods Algorithm Comparisons Search Methods mance Modelling Response Surface Methods

### **Response Surface Method**

ANOVA Introduction Regression Trees Analysis of Heuristics Racing methods Algorithm Comparisons Search Methods Performance Modelling Response Surface Methods

[Kutner et al., 2005; Montgomery, 2005; Ridge and Kudenko, 2007b,a] In optimizing a stochastic function direct search methods, such as NM, SA, DE and ParamILS,

- ► are derivative free
- do not attempt to model

Response Surface Method (RSM) tries to build a model of the surface from the sampled data.

Procedure:

- Model the relation between most important algorithm parameters, instance characteristics and responses.
- Optimize the responses based on this relation

Two steps:

- screening
- response surface modelling

77

### Step 1: Screening

to include in the RSM

Collect data

with t-test.

훈 ㅋ

Fractional factorial design

► Diagnostic + transformations

the basis of likelihood function

Used to identify the parameters that are not relevant

 Fit model: first only main effects, then add interactions, then quadratic terms, continue until resolution allows, compare terms

▶ Rank factor effect coefficients and assess significance

Method by [Box and Cox, 1964] to decide the best transformation on

Outline Introduction Analysis of Heuristics Algorithm Comparisons Performance Modelling Summary Outline Introduction Analysis of Heuristics Algorithm Comparisons Performance Modelling Response Surface Methods

ANOVA model for three factors:

**Fractional Factorial Designs** 

 $Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i3} + \beta_{12} X_{i12} + \beta_{13} X_{i13} + \beta_{23} X_{i23} + \beta_{123} X_{i123} + \epsilon_i$ 

• Study factors at only two levels  $rightarrow 2^k$  designs

| )       | nerical real |              |
|---------|--------------|--------------|
| > encod | cal integer  | ed as $-1$ , |
| J       | categorical  |              |

- Single replication per design point
- High order interactions are likely to be of little consequence confound with each other

| Treat. X1 X2 X3 | _ |
|-----------------|---|
|                 |   |
| 1 -1 -1 -1      |   |
| 2 1 -1 -1       |   |
| 3 -1 1 -1       |   |
| 4 1 1 -1        |   |
| 5 -1 -1 1       |   |
| 6  1  -1  1     |   |
| 7 -1 1 1        |   |
| 8 1 1 1         |   |

80

| Outline<br>Introduction<br>Analysis of Heuristics<br>gorithm Comparisons<br>erformance Modelling | ANOVA<br>Regression Trees<br>Racing methods<br>Search Methods |
|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| choninance modeling                                                                              | Response Surface Methods                                      |

큰 ㅋ

79

Fractional Factorial Designs

Outline ANOVA Introduction Regression Trees Algorithm Comparisons Performance Modelling Summary

 $Y_{i} = \beta_{0}X_{i0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \beta_{3}X_{i3} + \beta_{12}X_{i12} + \beta_{13}X_{i13} + \beta_{23}X_{i23} + \beta_{123}X_{i123} + \epsilon_{i}X_{i13} + \beta_{23}X_{i23} + \beta_{123}X_{i123} + \epsilon_{i}X_{i13} + \beta_{23}X_{i23} + \beta_{12}X_{i13} + \beta_{12}X_{i$ 

| Treat. | X0 | X1 | X2 | X3 | X12 | X13 | X23 | X123 |
|--------|----|----|----|----|-----|-----|-----|------|
| 1      | 1  | -1 | -1 | -1 | 1   | 1   | 1   | -1   |
| 2      | 1  | 1  | -1 | -1 | -1  | -1  | 1   | 1    |
| 3      | 1  | -1 | 1  | -1 | -1  | 1   | -1  | 1    |
| 4      | 1  | 1  | 1  | -1 | 1   | -1  | -1  | -1   |
| 5      | 1  | -1 | -1 | 1  | 1   | -1  | -1  | 1    |
| 6      | 1  | 1  | -1 | 1  | -1  | 1   | -1  | -1   |
| 7      | 1  | -1 | 1  | 1  | -1  | -1  | 1   | -1   |
| 8      | 1  | 1  | 1  | 1  | 1   | 1   | 1   | 1    |

- ▶  $2^{k-f}$ , k factors, f fraction
- ▶  $2^{3-1}$  if  $X_0$  confounded with  $X_{123}$  (half-fraction design) but also  $X_1 = X_{23}$ ,  $X_2 = X_{13}$ ,  $X_3 = X_{12}$

### Fractional Factorial Designs

Resolution is the number of factors involved in the lowest-order effect in the defining relation

Example:  $R = \lor \Rightarrow 2_V^{5-1} \Rightarrow X_0 = X_{12345}$  $R = III \Rightarrow 2_{III}^{6-2} \Rightarrow X_0 = X_{1235} = X_{123} = X_{456}$ 

 $R \geq {\rm III}$  in order to avoid confounding of main effects

It is not so simple to identify defining relation with the maximum resolution, hence they are catalogued

A design can be augmented by folding over, that is, reversing all signs

 $\mathbf{z} = \mathbf{V} \mathbf{z}^{3-2}$  if  $X_0$  confounded with  $X_{23}$ 

## Example: DE for CAPM

Outline ANOVA Regression Trees Analysis of Heuristics Racing methods Algorithm Comparisons Search Methods mance Modelling Response Surface Methods

# Example: DE for CAPM

1 -1 -1 -1

1 1 -1 -1

1 -1 1 -1

1 1 1 -1

1 -1 -1 1

1 1 -1 1

1 -1 1 1

2

3

4

5

6

7

ANOVA Regression Trees Analysis of Heuristics Racing methods Algorithm Comparisons Search Methods Performance Modelling Response Surface Methods

440

880

1240

2480

1240

2480

440

880

1240

2480

440

880

440

880

1240

2480

value time nfeval

-1 5.358566e-05 0.216

-1 5.564804e-05 0.448

1 6.803661e-05 0.660

1 6.227293e-05 1.308

1 4.993460e-05 0.652

1 4.993460e-05 1.305

-1 5.869048e-05 0.228

#### Differential Evolution for CAPM

- ▶ Termination condition: Number of idle iterations
- ► Factors:

|           | Factor                                      | Type | Low (-) | High $(-)$ |
|-----------|---------------------------------------------|------|---------|------------|
| NP        | Number of population members                | Int  | 20      | 50         |
| F         | weighting factor                            | Real | 0       | 2          |
| CR        | Crossover probability from interval         | Real | 0       | 1          |
| initial   | An initial population                       | Cat. | Uniform | Quasi MC   |
| strategy  | Defines the DE variant used in mutation     | Cat. | rand    | best       |
| idle iter | Number of idle iteration before terminating | Int. | 10      | 30         |

- Performance measures:
  - computational cost: number of function evaluations
  - quality: solution cost
- ▶ Blocking on 5 instances ➡ design replicates ➡  $2^6 \cdot 5 = 320$

Fractional Design:  $2_{IV}^{6-2} \cdot 5 = 80$ 

main effects and second order interactions not confounded.

훈 ㅋ

훈 ㅋ 83

Example: DE for CAPM





| 8  | 1 1 1 1    | -1 | 1  | -1 6.694168e-05 0.448 |
|----|------------|----|----|-----------------------|
| 9  | 1 -1 -1 -1 | 1  | -1 | 1 5.697797e-05 0.676  |
| 10 | 1 1 -1 -1  | 1  | 1  | 1 7.267454e-05 1.308  |
| 11 | 1 -1 1 -1  | 1  | 1  | -1 2.325979e-04 0.220 |
| 12 | 1 1 1 -1   | 1  | -1 | -1 9.098808e-05 0.452 |
| 13 | 1 -1 -1 1  | 1  | 1  | -1 8.323734e-05 0.228 |
| 14 | 1 1 -1 1   | 1  | -1 | -1 6.015744e-05 0.460 |
| 15 | 1 -1 1 1   | 1  | -1 | 1 6.244267e-05 0.668  |
| 16 | 1 1 1 1    | 1  | 1  | 1 5.348372e-05 1.352  |
|    |            |    |    |                       |
|    |            |    |    |                       |

instance NP F CR initial strategy idleiter

-1

-1

-1

-1

-1

-1

-1

-1

1

1

-1

1

-1

-1

### Example: DE for CAPM

Call:

lm(formula = (rank^(1.2) - 1)/1.2 ~ (NP + F + CR + initial +

strategy + idleiter + instance)^2 - 1, data = DE)

| Residuals: |        |        |       |        |  |
|------------|--------|--------|-------|--------|--|
| Min        | 1Q     | Median | 3Q    | Max    |  |
| -10.277    | -1.959 | 1.056  | 6.423 | 13.979 |  |

| COEIIICIENTS: (8 | not dellne | a pecause of | : sıngu. | Larities) |   |
|------------------|------------|--------------|----------|-----------|---|
|                  | Estimate   | Std. Error t | value    | Pr(> t )  |   |
| NP               | -1.32447   | 1.76772      | -0.749   | 0.4566    |   |
| F                | 3.40635    | 1.76772      | 1.927    | 0.0587    |   |
| CR               | -2.21180   | 1.76772      | -1.251   | 0.2157    |   |
| initial          | 2.47629    | 1.76772      | 1.401    | 0.1664    |   |
| strategy         | 1.47545    | 1.76772      | 0.835    | 0.4072    |   |
| idleiter         | -1.81289   | 1.76772      | -1.026   | 0.3092    |   |
| instance         | 2.85013    | 0.22727      | 12.541   | <2e-      |   |
| 16 ***           |            |              |          |           |   |
| NP:F             | -1.84492   | 0.75376      | -2.448   | 0.0173    | * |
| NP:CR            | -1.92013   | 0.75376      | -2.547   | 0.0134    | * |
| NP:initial       | -0.62881   | 0.75376      | -0.834   | 0.4075    |   |
| NP:strategy      | -0.96685   | 0.75376      | -1.283   | 0.2045    |   |
| NP:idleiter      | 0.54652    | 0.75376      | 0.725    | 0.4712    |   |
| NP:instance      | 0.46387    | 0.53299      | 0.870    | 0.3876    |   |
| F:initial        | -0.29205   | 0.75376      | -0.387   | 0.6998    |   |
| F:idleiter       | -0.61857   | 0.75376      | -0.821   | 0.4151    |   |
| F:instance       | 0.01824    | 0.53299      | 0.034    | 0.9728    |   |
| CR:instance      | -0.12302   | 0.53299      | -0.231   | 0.8182    |   |
| initial:instance | -0.29898   | 0.53299      | -0.561   | 0.5769    |   |
| strategy:instanc | e -0.28582 | 0.53299      | -0.536   | 0.5938    |   |
| idleiter:instanc | e 0.05713  | 0.53299      | 0.107    | 0.9150    |   |
|                  |            |              |          |           |   |

ANOVA Regression Trees Analysis of Heuristics Racing methods Algorithm Comparisons Search Methods Performance Modelling Response Surface Methods

Max



lm(formula = (nfeval^2 - 1)/2 ~ (NP + F + CR + initial + strategy idleiter + instance)^2 - 1, data = DE)

ЗQ

#### Residuals: Min 1Q Median

Call:

F

| -393454 | -98364 | 196727 | 491818 | 786909 |
|---------|--------|--------|--------|--------|
| 000101  | 00001  | 100121 | 101010 | 100000 |
|         |        |        |        |        |

| Coefficients:  | (8 not | defined  | beca  | use of | sin  | gulari | ties)    |     |
|----------------|--------|----------|-------|--------|------|--------|----------|-----|
|                | 1      | Estimate | Std.  | Error  | t    | value  | Pr(> t ) |     |
| NP             | 6      | .492e+05 | 1.3   | 97e+05 |      | 4.648  | 1.89e-05 | *** |
| F              | 1      | .661e-12 | 1.3   | 97e+05 | 1.   | 19e-17 | 1        |     |
| CR             | -1     | .624e-10 | 1.3   | 97e+05 | -1.  | 16e-15 | 1        |     |
| initial        | 2      | .584e-11 | 1.3   | 97e+05 | 1.   | 85e-16 | 1        |     |
| strategy       | -9     | .993e-11 | 1.3   | 97e+05 | -7.  | 15e-16 | 1        |     |
| idleiter       | 8      | .400e+05 | 1.3   | 97e+05 |      | 6.014  | 1.17e-07 | *** |
| instance       | 2      | .951e+05 | 1.7   | 96e+04 |      | 16.432 | < 2e-16  | *** |
| NP:F           | -8     | .736e-12 | 5.9   | 56e+04 | -1.  | 47e-16 | 1        |     |
| NP:CR          | 2      | .430e-11 | 5.9   | 56e+04 | 4.   | 08e-16 | 1        |     |
| NP:initial     | 1      | .737e-11 | 5.9   | 56e+04 | 2.   | 92e-16 | 1        |     |
| NP:strategy    | 1      | .603e-11 | 5.9   | 56e+04 | 2.   | 69e-16 | 1        |     |
| NP:idleiter    | 5      | .040e+05 | 5.9   | 56e+04 |      | 8.462  | 8.02e-12 | *** |
| NP:instance    | 8      | .712e-11 | 4.2   | 12e+04 | 2.   | 07e-15 | 1        |     |
| F:initial      | -1     | .663e-11 | 5.9   | 56e+04 | -2.  | 79e-16 | 1        |     |
| F:idleiter     | 3      | .122e-11 | 5.9   | 56e+04 | 5.   | 24e-16 | 1        |     |
| F:instance     | -5     | .101e-12 | 4.2   | 12e+04 | -1.3 | 21e-16 | 1        |     |
| CR:instance    | 5      | .035e-11 | 4.2   | 12e+04 | 1.   | 20e-15 | 1        |     |
| initial:instan | ce -2  | .903e-12 | 4.2   | 12e+04 | -6.  | 89e-17 | 1        |     |
| strategy:insta | nce 3  | .272e-11 | 4.2   | 12e+04 | 7.   | 77e-16 | 1        |     |
| idleiter:insta | nce 7  | .097e-11 | 4.2   | 12e+04 | 1.   | 69e-15 | 1        |     |
|                |        |          |       |        |      |        |          |     |
| Signif. codes: | 0 **:  | * 0.001  | ** 0. | 01 * 0 | .05  | . 0.1  | ' ' 1    |     |

Signif. codes: 0 \*\*\* 0.001 \*\* 0.01 \* 0.05 . 0.1 ' ' 1

86

## Example: DE for CAPM

Outline Introduction Analysis of Heuristics Algorithm Comparisons Performance Modelling Response Surface Methods



| Factor   | Estimate effect | F-test | Estimate    | F-test |
|----------|-----------------|--------|-------------|--------|
|          | cost effect     |        | time effect |        |
| F        | 3.40635         |        | 1.661e-12   |        |
| CR       | -2.21180        |        | -1.624e-10  |        |
| initial  | 2.47629         |        | 2.584e-11   |        |
| idleiter | -1.81289        |        | 8.400e+05   | ***    |
| strategy | 1.47545         |        | -9.993e-11  |        |
| NP       | -1.32447        |        | 6.492e+05   | ***    |

However, screening ignore possible curvatures ➡ augment design by replications at the center points

If lack of fit then there is curvature in one or more factors  $\blacktriangleright$  more experimentations is needed







Outline Introduction Analysis of Heuristics Algorithm Comparisons Performance Modelline Summary



Outline Introduction Analysis of Heuristics Algorithm Comparisons Performance Modelling Response Surface Methods



levels  $X_j$  of the *j*th factor are coded as:

$$X_j = \frac{\text{actual level} - \frac{\text{high level} + \text{low level}}{2}}{\frac{\text{high level} - \text{low level}}{2}}$$



-E | =

## **Response Surface Designs**

Designs for estimating second-order term response surface models: Rotatability: equal precision at any distance from the center point.  $(\sigma^2 \{Y_h\}$  is the same at any  $X_h$ )



number of experiments  $= 2^{k-f} n_c$  corner points  $+ k n_s$  star points  $+ n_0$ 



# Example: SA for CAPM



ANOVA

Analysis of Heuristics

Algorithm Comparisons

Regression Trees

Racing methods

Search Methods

#### SA for CAPM

|      | Factor                                        | Low (-) | High $(-)$ |
|------|-----------------------------------------------|---------|------------|
| Eval | Max number of evaluations                     | 10000   | 30000      |
| Temp | Starting temperature for the cooling schedule | 5       | 15         |
| Tmax | Function evaluations at each temperature      | 50      | 150        |

- ▶ We use an inscribed central composite design with 4 replicates at the center  $\Rightarrow$  18 points
- ▶ 10 replicates for each of the 18 points blocking on 10 different instances.

### Analysis

Analysis of response surface experiments

- estimate response function by general linear regression for each response variable. Hierarchical approach, backward elimination.
- interpret the model by visualization
  - 3D surface, contour plots, conditional effects plots, overlay contour plots
- identification of optimum operating conditions (or sequential search for optimum conditions)
  - desirability function  $d_i(Y_i) : \mathbf{R} \mapsto [0, 1]$ :

$$d_i(Y_i) = \begin{cases} 1 & \text{if } \widehat{Y}_i(x) < T \text{ (target value)} \\ \frac{\widehat{Y}_i(x) - U_i}{T_i - U_i} & \text{if } T_i \leq \widehat{Y}_i(x) \leq U_i \\ 0 & \text{if } \widehat{Y}_i(x) > U_i \end{cases}$$

• minimize  $\left(\prod_{i=1}^{k} d_i\right)^{1/k}$ 

훈 =

92

### Example: SA for CAPM

ANOVA Regression Trees Racing methods Algorithm Comparisons Search Methods Response Surface Methods

The Design in Encoded Variables (internal central composite design)

|    | X1         | X2         | ХЗ         |
|----|------------|------------|------------|
| 1  | -0.7071068 | -0.7071068 | -0.7071068 |
| 2  | 0.7071068  | -0.7071068 | -0.7071068 |
| 3  | -0.7071068 | 0.7071068  | -0.7071068 |
| 4  | 0.7071068  | 0.7071068  | -0.7071068 |
| 5  | -0.7071068 | -0.7071068 | 0.7071068  |
| 6  | 0.7071068  | -0.7071068 | 0.7071068  |
| 7  | -0.7071068 | 0.7071068  | 0.7071068  |
| 8  | 0.7071068  | 0.7071068  | 0.7071068  |
| 9  | -1.0000000 | 0.000000   | 0.000000   |
| 10 | 1.0000000  | 0.000000   | 0.000000   |
| 11 | 0.000000   | -1.0000000 | 0.000000   |
| 12 | 0.000000   | 1.0000000  | 0.000000   |
| 13 | 0.000000   | 0.000000   | -1.0000000 |
| 14 | 0.000000   | 0.000000   | 1.0000000  |
| 15 | 0.000000   | 0.000000   | 0.000000   |
| 16 | 0.000000   | 0.000000   | 0.000000   |
| 17 | 0.000000   | 0.000000   | 0.000000   |
| 18 | 0.0000000  | 0.000000   | 0.000000   |

04

| Example: SA for CAPM                                                                                                                                                                          | Outline<br>Analysis of Heuristics<br>Algorithm Comparisons<br>Performance Modelling<br>Summary | Example: SA for CAPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Outline<br>Introduction<br>Analysis of Heuristics<br>Algorithm Comparisons<br>Performance Modelling<br>Summary |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| <pre>&gt; sa.q &lt;- stepAIC(lm(scale ~ ((Eval * Temp * Tmax) + I(Eval^2) + + I(Eval^3) + I(Temp^2) + I(Temp^3) + I(Tmax^2) + I(Tmax^3)), + data = SA), trace = FALSE) &gt; sa.q\$anova</pre> |                                                                                                | <pre>&gt; sa.t &lt;- stepAIC(lm(time ~ ((Eval * Temp * Tmax) + I(Eval^2) +<br/>+ I(Eval^3) + I(Temp^2) + I(Temp^3) + I(Tmax^2) + I(Tmax^3)),<br/>+ data = SA), trace = FALSE)<br/>&gt; sa.t\$anova</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                |
| <pre>Stepwise Model Path<br/>Analysis of Deviance Table<br/>Initial Model:<br/>scale ~ ((Eval * Temp * Tmax) + I(Eval^2) + I(Eval^3) + I(Temp^2) +</pre>                                      |                                                                                                | <pre>Stepwise Model Path<br/>Analysis of Deviance Table<br/>Initial Model:<br/>time ~ ((Eval * Temp * Tmax) + I(Eval^2) + I(Eval^3) + I(Temp^2) +<br/>I(Temp^3) + I(Tmax^2) + I(Tmax^3))<br/>Final Model:<br/>time ~ Eval + I(Eval^2) + I(Tmax^2)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                        |                                                                                                | Step Df         Deviance Resid. Df Resid. Dev         AIC           1         166         5.033365         -615.8363           2         - Eval:Temp:Tmax         1 0.0007938000         167         5.033455         -617.8079           3         - I(Temp:3)         1 0.0012366700         168         5.035397         -619.7636           4         - I(Tmar:3)         1 0.0020403172         169         5.035474         -621.6920           5         - Eval:Tmax         1 0.0062009141         171         5.045647         -623.6397           6         - I(Eval:3)         1 0.0062668000         172         5.05190         -627.1743           8         - Tmax         1 0.00671442000         174         5.059462         -630.9004           9         - Eval:Temp         1 0.00071442000         174         5.059462         -630.9004           10         - Temp         1 0.0037637556         176         5.073479         -634.4074 |                                                                                                                |

- 문 =

97

ANOVA Regression Trees Racing methods Search Methods

Response Surface Methods

Algorithm Comparisons

ice Modelling

Example: SA for CAPM

### Quality:

| (Intercept) | Temp       | I(Eval^2) | I(Temp^3) | I(Tmax^2) |
|-------------|------------|-----------|-----------|-----------|
| -0.3318884  | -0.7960063 | 0.4793772 | 1.0889321 | 0.5162880 |

#### Computation Time:

| (Intercept) | Eval       | I(Eval^2)   | I(Tmax^2)   |
|-------------|------------|-------------|-------------|
| 4.13770000  | 2.02807697 | -0.05713333 | -0.06833333 |

#### Desirability function approach:



| Outline                | NOVA                    |
|------------------------|-------------------------|
| Introduction           | egression Trees         |
| Analysis of Heuristics | acing methods           |
| Algorithm Comparisons  | arch Methods            |
| Performance Modelling  | esponse Surface Methods |
| Summary Re             | sponse Surface Wethods  |





### Example: SA for CAPM

#### Outline Introduction Analysis of Heuristics Algorithm Comparisons Performance Modelling Summary



Conclusions:

- ▶ Eval=0, Temp=0.5, Tmax=0 (encoded variables)
- ► Eval=20000, Temp=13, Tmax=100
- But this is just only a local optimum!

-E | =

# Summary

#### Search methods

- + fully automatic (black box)
- $+\,$  allow a very large search space
- $+\,$  can handle nesting on algorithm factors
- not statistically sound
- Too many free parameters (paradoxical)

#### Race

- + fully automatic
- + statistically sound
- $+\,$  can handle very well nesting on the algorithm factors
- $-\,$  indentifies the best but does not provide factorial analysis
- might still be lengthy but faster variants exists
- handles only univariate case, but bivariate examples exists [den Besten, 2004]

### Summary

#### ANOVA

- works well only if few factors
- analysis can be rather complicated

#### Regression Trees

- + very intuitive visualization of results
- require full factorial and no nesting
- problems with blocking
- $-\,$  black box and not used so far

#### Response Surface Methods:

- only for numerical parameters
- not automatic but interactive and time consuming
- $-\,$  restricted to analysis with crossing factors

문 ㅋ

102

ANOVA Regression Trees

Racing methods

Search Methods

Response Surface Methods

of Heuristics

ce Modelling

Algorithm Comparisons

Outline Introduction Analysis of Heuristics Algorithm Comparisons Solution Quality

# Outline

#### 1. Introduction

CAPM Optimization Heuristics

#### 2. Analysis of Optimization Heuristics

Theoretical Analysis Empirical Analysis Scenarios of Analysis

### 3. Tools and Techniques for Algorithm Configuration

ANOVA Regression Trees Racing methods Search Methods Response Surface Method

### 4. Performance Modelling

Run Time Solution Quality

#### 5. Summary

104

글 =

## Analysis Scenarios

Outline Introduction Analysis of Heuristics Algorithm Comparisons Performance Modelling Summary

Introduction

Performance Modelling

Analysis of Heuristics Run Time

Solution Quality

If the analysis scenario allows we can gain more precise insights by distribution modelling:

|                     | Minimum<br>Known                   | Minimum<br>Unknown                                              |
|---------------------|------------------------------------|-----------------------------------------------------------------|
| Run<br>Time         | (VTR or gap)<br>Restart Strategies | Time or idle iterations<br>as parameters<br>(see previous part) |
| Solution<br>Quality |                                    | Estimation of Optima                                            |

It is good to keep always in mind what case one is considering

- ► **<-/-/**1/*r***>**
- ► <-/-/n/1>
- -E | =

# Characterization of Run-time

Parametric models used in the analysis of run-times to:

- provide more informative experimental results
- make more statistically rigorous comparisons of algorithms
- exploit the properties of the model (eg, the character of long tails and completion rate)
- predict missing data in case of censored distributions
- better allocation of resources
  - ▶ Restart strategies [Gagliolo and Schmidhuber, 2006]
  - Algorithm portfolios (multiple copies of the same algorithm in parallel) [Gomes and Selman 2001, Gagliolo and Schmidhuber, 2008]
  - Anytime algorithms (estimate the quality given the input and the amount of time that they will be executed) [Boddy and Dean, 1989]

Restart strategy: a sequence of cutoff times T(k) for each restart k

### Outline



### 1. Introduction

Ontimization Heuristics

#### 2. Analysis of Optimization Heuristics

Theoretical Analysis Empirical Analysis Scenarios of Analysis

#### 3. Tools and Techniques for Algorithm Configuration

ANOVA Regression Trees Racing methods Search Methods Response Surface Methods

#### 4. Performance Modelling

Run Time Solution Quality

#### 5. Summary

흔 ㅋ

106

Outline Introduction Analysis of Heuristics Algorithm Comparisons Solution Quality Performance Modelling

# Restart Strategies

### **\-/-/**1/*r*

107

**Theorem:** [Luby, Sinclair, and Zuckerman, 1993] If the RTD of an instance is known

 $\Downarrow$ 

optimal restart strategy is uniform, that is, it is based on constant cutoff,  $T(r) = T^*$ . To find  $T^*$ :

minimize expected value of total run time  $t_T$  which is given by:

$$E(t_T) = \frac{T - \int_0^T F(\tau) d\tau}{F(T)}$$

Two issues:

- 1. the theorem is valid only for one instance
- 2. F(t) is the cdf of the run-time t of an unbounded run of the algorithm which is not know and its estimation might be costly

## **Distribution Modelling**



Analysis of Heuristics Run Time

mance Modelling

olution Quality

We accept two approximations:

- 1. we generalize to a class of instances accepting that instances might be similar
- 2. we use  $\widehat{F}(t)$  estimated from data, if necessary, censored.

#### Three offline methods:

- A: modelling the full distribution
- B: modelling the distribution with censored data
- C: modelling the tails (extreme value statistics)

#### Procedure:

- choose a model, *i.e.*, probability function  $f(x, \theta)$
- ▶ apply fitting method to determine the parameters Eg, maximum likelihood estimation method
- test the model (Kolmogorov-Smirnov goodness of fit tests)

훈 ㅋ

111

## Run Time Distributions

Motivations for these distributions:

- $\blacktriangleright$  gualitative information on the completion rate (= hazard function)
- empirical good fitting

Most of the work on RTDs is on SAT or CSP instances and  $\langle -/-/1/r \rangle$ For complete backtracking algorithms:

- shown to be Weibull or lognormal distributed on CSP [Frost et al., 1997]
- ▶ shown to have heavy tails on CSP and SAT [Gomes et al., 1997]

For stochastic local search algorithms:

shown to have mixture of exponential distributions [Hoos, 2002]

# Some Parametric Distributions

The distributions used are [Frost et al., 1997; Gomes et al., 2000]:



훈 =

Analysis of Heuristics Run Time olution Quality Performance Modelling

### Model Fitting in Practice

Which parametric family of models is best for our data?

- underlying knowledge
- ▶ try to make plots that should be linear. Departures from linearity of the data can be easily appreciated by eye.

**Example:** for an exponential distribution, it is:

 $\log S(t) = -\lambda t,$ where S(t) = 1 - F(t) survivor function

hence the plot of  $\log S(t)$  against t should be linear.

#### Similarly, for the Weibull the cumulative hazard function is linear on a log-log plot

112

Analysis of Heuristics Run Time Solution Quality Performance Modelling

### Application Example

Outline Introduction Analysis of Heuristics Algorithm Comparisons Performance Modelling Summary Outline Introduction Analysis of Heuristics Run Time Algorithm Comparisons Solution Quality Performance Modelling Summary

Difficulties in the application to the CAPM case:

- The best algorithm is random restart Nelder-Mead (which already uses restart!)
- SA and DE never reach the solutions returned by RRNM hence all runs would be censored!
- Optimum unknown. Deciding a VTR or a gap: Which one? Why?
- In these cases the analysis provided before is enough to tell us when to restart.



Two algorithms for a CSP problem. 50 runs on a single instance with time limit 100 seconds.



.클 =



olution Quality

Example on CSP Characterization of Run-time

Two algorithms for a CSP problem. 50 runs on a single instance with time limit 100 seconds.



### linear => weibull

Analysis of Heuristics Run Time

Performance Modelling



# Characterization of Run-time Example

#### **Distribution fitting**

훈 =

115

 $f(t, \theta)$  probability density function of solution time t with parameter  $\theta$ . Maximum likelihood method:

$$\max_{\boldsymbol{\theta}} L(T_1, T_2, \dots, T_k \mid \boldsymbol{\theta}) = \prod_{i=1}^{k} Pr(T_i \mid \boldsymbol{\theta}) = \prod_{i=1}^{k} f(T_i \mid \boldsymbol{\theta})$$

**Example:** f() exponential or Weibull



 grey curve: Weibull distributed with KS test *p*-value 0.4955

Analysis of Heuristics Run Time

Performance Modelling

Solution Quality

 black curve: exponential distributed with KS test *p*-value 0.3470

### **B:** Fitting Censored Distributions

# Example on CSP

Outline Introduction Analysis of Heuristics Algorithm Comparisons Performance Modelling Summary

Analysis of Heuristics Run Time

Performance Modelling

olution Quality

### **\-/-/**1/*r*

#### Type I censor sampling:

decide a cutoff time  $t_c$  and stop experiments that exceed that cutoff Using indicator function  $\delta_i$ :

$$L(T|\theta) = \prod_{i=1}^{k} f(T_i|\theta)^{\delta_i} \left( \int_{t_c}^{\infty} f(\tau|\theta) d\tau \right)^{1-\delta}$$

Introduction

Performance Modelling

Analysis of Heuristics Run Time

Analysis of Heuristics Run Time

Performance Modelling

olution Quality

Solution Quality

#### Type II censor sampling:

r experiments are run in parallel and stopped whenever  $\boldsymbol{u}$  uncensored samples are obtained.

Thus, c = (r - u)/r are set in advance, and  $t_c$  is equal to time of uth fastest.



2 a

118 클 =

Application Example Learning Restart Strategy

> [Impact of Censored Sampling on the Performance of Restart Strategies Gagliolo & Schmidhuber, CP 2006] (-/-/n/r)

Use the following learning scheme based on Type II censoring to estimate  $\hat{F}$ :

- ▶ pick n = 50 instances at random and start r = 20 runs with different seed on each instance ➡ k = nr experiments
- ▶ fix a censoring threshold  $c \in [0, 1]$ . As the first |(1 - c)k| runs terminate, stop also the remaining  $\lceil ck \rceil$ .
- $\blacktriangleright$  data are used to train a model  $\widehat{F}$  of RTD by solving max likelihood
- from  $\widehat{F}$  a uniform strategy is derived by solving:

$$\min_{T} \frac{T - \int_{0}^{T} F(\tau) d\tau}{F(T)}$$

test performance on the remaining instances of the class

Note: tradeoff training time vs censor threshold u



- Extreme value statistics focuses on characteristics related to the tails of a distribution function.
  - 1. indices describing tail decay
  - 2. extreme quantiles (e.g., minima)
- 'Classical' statistical theory: analysis of means.
   Central limit theorem: X<sub>1</sub>,..., X<sub>n</sub> i.i.d. with F<sub>X</sub>

$$\sqrt{n} rac{ar{X} - \mu}{\sqrt{Var(X)}} \xrightarrow{D} N(0, 1), \qquad \text{as } n \to \infty$$

Heavy tailed distributions: mean and/or variance may not be finite!

-2 | =

### Heavy Tails



[Gomes, Selman, Crato, and Kautz, 2000] analyze the mean computational cost of backtracking algorithms to find a solution on a single instance of CSP (-/-/1/r)



Figure: Mean calculated over an increasing number of runs. Left, erratic behavior, long tail. Right, the case of data drawn from normal or gamma distributions.

- ▶ The existence of the moments (*e.g.*, mean, variance) is determined by the tails behavior: long tails imply non existence
- > This suggests the use of the median rather than the mean for reporting . 관리권



Analysis of Heuristics Run Time Solution Quality Performance Modelling

### Heavy Tails

The estimated values of  $\gamma$  give indications on the tails:

- $\gamma > 1$ : long tails, hyperbolic decay and mean not finite (the completion rate decreases with t)
- $\triangleright \gamma < 1$ : tails exhibit exponential decay

Graphical check using a log-log plot (or a Pareto qqplot)

- heavy tail distributions approximate linear decay,
- exponentially decreasing tail has faster-than linear decay



Long tails explain the goodness of random restart. Determining the cutoff time is however not trivial.

### **Extreme Value Statistics** Tail theory

Analysis of Heuristics Run Time Solution Quality Performance Modelling

- Work with data exceeding a high threshold.
- Conditional distribution of exceedances over threshold  $\tau$

$$1 - F_{\tau}(y) = P(X - \tau > y \mid X > \tau) = \frac{P(X > \tau + y)}{P(X > \tau)}$$

▶ Theorem of [Fisher and Tippett, 1928]: the distribution of extremes tends in distribution to a generalized extreme value distribution (GEV)  $\Leftrightarrow$  exceedances tend to a generalized Pareto distribution

Pareto-type distribution function

$$1 - F_X(x) = x^{-\frac{1}{\gamma}} \ell_F(x), \qquad x > 0,$$

where  $\ell_F(x)$  is a slowly varying function at infinity.

In practice, fit a function  $Cx^{-\frac{1}{\gamma}}$  to the exceedances:  $Y_i = X_i - \tau$ , provided  $X_i > \tau$ ,  $j = 1, \ldots, N_{\tau}$ .  $\gamma$  determines the nature of the tail

122

훈 =

Example on CSP Heavy Tails

Run Time Performance Modelling





Time to find a solution

# Outline

#### 1. Introduction

CAPM Optimization Heuristics

#### 2. Analysis of Optimization Heuristics

Theoretical Analysis Empirical Analysis Scenarios of Analysis

#### 3. Tools and Techniques for Algorithm Configuration

ANOVA Regression Trees Racing methods Search Methods Response Surface Met

#### 4. Performance Modelling

Run Time

### Solution Quality

#### 5. Summary

```
-E | =
```

# Extreme Values Statistics

### Extreme values theory

- ►  $X_1, X_2, ..., X_n$  i.i.d.  $F_X$ Ascending order statistics  $X_n^{(1)} \le ... \le X_n^{(n)}$
- For the minimum  $X_n^{(1)}$  it is  $F_{X_n^{(1)}} = 1 [1 F_X^{(1)}]^n$  but not very useful in practice as  $F_X$  unknown
- Theorem of [Fisher and Tippett, 1928]:
   "almost always" the normalized extreme tends in distribution to a generalized extreme value distribution (GEV) as n → ∞.

In practice, the distribution of extremes is approximated by a GEV:

$$F_{X_n^{(1)}}(x) \sim \begin{cases} \exp(-1(1-\gamma \frac{x-\mu}{\sigma})^{-1/\gamma}, & 1-\gamma \frac{x-\mu}{\sigma} > 0, \gamma \neq 0\\ \exp(-\exp(\frac{x-\mu}{\sigma})), & x \in \mathbf{R}, \gamma = 0 \end{cases}$$

Parameters estimated by simulation by repeatedly sampling k values  $X_{1n}, \ldots, X_{kn}$ , taking the extremes  $X_{kn}^{(1)}$ , and fitting the distribution.  $\gamma$  determines the type of distribution: Weibull, Fréchet, Gumbel, ...

# Analysis Scenarios

If the analysis scenario allows we can gain more precise insights by distribution modelling:

|                     | Minimum<br>Known                   | Minimum<br>Unknown                                              |
|---------------------|------------------------------------|-----------------------------------------------------------------|
| Run<br>Time         | (VTR or gap)<br>Restart Strategies | Time or idle iterations<br>as parameters<br>(see previous part) |
| Solution<br>Quality |                                    | Estimation of Optima                                            |

It is good to keep always in mind what case one is considering

- ► **<-/-/**1/*r***>**
- ► <-/-/n/1>

12 14

126

Run Time

mance Modelling

Solution Quality

### Characterization of Quality On a single instance

Outline Introduction Analysis of Heuristics Algorithm Comparisons Performance Modelling Summary

Analysis of Heuristics Run Time

Performance Modelling

Solution Quality

Application of distribution modelling and extreme values theory for the characterization of solution quality.

 $\blacktriangleright$  In random picking, final quality is the minimum cost of k i.i.d. solutions generated, that is,  $Y_k^{(1)}.$ 

Hence, possible to simulate the distribution of minima by repeating  $\boldsymbol{n}$  times.

- ► In other stochastic optimizers, steps are dependent, but possible to simulate independence by taking the minimum over l < k and over k and repeating for n times
- Studies conducted by [Ovacik et al., 2000; Hüsler et al., 2003].
   Possible to estimate the distance from the optimum: If the fitting indicates the Weibull (finite left tail) as the best then solutions near to the optimum

Note: extreme value theory applies only to asymptotically continuous functions!

e e

## Outline

#### 1. Introduction

CAPM Optimization Heuristi

#### 2. Analysis of Optimization Heuristics

Theoretical Analysis Empirical Analysis Scenarios of Analysis

#### 3. Tools and Techniques for Algorithm Configuration

ANOVA Regression Trees Racing methods Search Methods Response Surface Met

#### 4. Performance Modelling

Run Time Solution Quality

#### 5. Summary

-E | =

### References

- Bäck T. and Hoffmeister F. (2004). Basic aspects of evolution strategies. Statistics and Computing, 4(2), pp. 51–63.
- Bartz-Beielstein T. (2006). Experimental Research in Evolutionary Computation The New Experimentalism. Natural Computing Series. Springer, Berlin.
- Bartz-Beielstein T. and Markon S. (2004). Tuning search algorithms for real-world applications: A regression tree based approach. In Congress on Evolutionary Computation (CEC'04), pp. 1111–1118. IEEE Press, Piscataway NJ.

Beyer H.G. (2001). On the performance of the  $(1,\lambda)$ -evolution strategies for the ridge function class. *IEEE Transactions on Evolutionary Computation*, 5(3), pp. 218–235.

Birattari M. (2004). On the estimation of the expected performance of a metaheuristic on a class of instances. how many instances, how many runs? Tech. Rep. TR/IRIDIA/2004-01, IRIDIA, Université Libre de Bruxelles, Brussels, Belgium.

Birattari M. (2005). The Problem of Tuning Metaheuristics as Seen from a Machine Learning Perspective. DISKI 292. Infix/Aka, Berlin, Germany.

Birattari M., Pellegrini P., and Dorigo M. (2007). On the invariance of ant colony optimization. IEEE Transactions on Evolutionary Computation, 11(6), pp. 732–742.

Birattari M., Stützle T., Paquete L., and Varrentrapp K. (2002). A racing algorithm for configuring metaheuristics. In *Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2002)*, edited by W.B. Langdon, E. Cantú-Paz, K. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrishnan, V. Honavar, G. Rudolph, J. Wegener, L. Bull, M. Potter, A. Schultz, J. Miller, E. Burke, and N. Jonoska, pp. 11–18. Morgan Kaufmann Publishers, New York.

Bratley P., Fox B.L., and Niederreiter H. (1994). Algorithm-738 - programs to generate niederreiters low-discrepancy sequences. ACM Transactions On Mathematical Software, 20(4), pp. 494–495.

Coffin M. and Saltzman M.J. (2000). Statistical analysis of computational tests of algorithms and heuristics. *INFORMS Journal on Computing*, 12(1), pp. 24–44.

### Summary

Introduction

Summary

Analysis of Heuristics

Algorithm Comparisons

 Common practice in CS and OR to report results on benchmark instances in numerical tables.

- Graphics are complementary to tables and are often better suitable for summarizing data.
- Not a single standard tool for analysis but several tools and several aspects to look at. Look at every case as a different one.
- For configuration and tuning: racing methodologies make things easy.

Alternatively: Regression trees, search methods, response surface, ANOVA

- Modelling can be insightful but limited to problems that can be solved.
- Restart, comparisons, prediction.

### References (2)

글 =

130

- Conover W. (1999). Practical Nonparametric Statistics. John Wiley & Sons, New York, NY, USA, third ed.
- den Besten M.L. (2004). Simple Metaheuristics for Scheduling: An empirical investigation into the application of iterated local search to deterministic scheduling problems with tardiness penalties. Ph.D. thesis, Darmstadt University of Technology, Darmstadt, Germany.
- Frost D., Rish I., and Vila L. (1997). Summarizing CSP hardness with continuous probability distributions. In Proceedings of AAAI/IAAI, pp. 327–333.
- Gomes C., Selman B., and Crato N. (1997). Heavy-tailed distributions in combinatorial search. In *Principles and Practices of Constraint Programming, CP-97*, vol. 1330 of Incs, pp. 121–135. springer-Incs, Linz, Austria.
- Gomes C., Selman B., Crato N., and Kautz H. (2000). Heavy-tailed phenomena in satisfiability and constraint satisfaction problems. Journal of Automated Reasoning, 24(1-2), pp. 67–100.
- Gutjahr W.J. (2008). First steps to the runtime complexity analysis of ant colony optimization. Computers & OR, 35(9), pp. 2711–2727.
- Hoos H.H. (2002). A mixture-model for the behaviour of sls algorithms for sat. In *Proceedings* of the 18th National Conference on Artificial Intelligence (AAAI-02), pp. 661–667. AAAI Press / The MIT Press.
- Hothorn T., Hornik K., and Zeileis A. (2006). Unbiased recursive partitioning: A conditional inference framework. Journal of Computational and Graphical Statistics, 15(3), pp. 651–674
- Hüsler J., Cruz P., Hall A., and Fonseca C.M. (2003). On optimization and extreme value theory. Methodology and Computing in Applied Probability, 5, pp. 183–195.
- Hutter F., Hoos H.H., and Stützle T. (2007). Automatic algorithm configuration based on local search. In Proc. of the Twenty-Second Conference on Artifical Intelligence (AAAI '07), pp. 1152–1157.
- Kutner M.H., Nachtsheim C.J., Neter J., and Li W. (2005). Applied Linear Statistical Models. McGraw Hill, fifth ed.
- Lawless J.F. (1982). Statistical Models and Methods for Lifetime Data. Wiley Series in Probability and Mathematical Statistics. jws.
- Luby M., Sinclair A., and Zuckerman D. (1993). **Optimal speedup of las vegas algorithms**. *Information Processing Letters*, 47(4), pp. 173–180.

131

Introduction Analysis of Heuristics Algorithm Comparisons Performance Modelling Summary

## References (3)

- McGeoch C.C. (1992). Analyzing algorithms by simulation: Variance reduction techniques and simulation speedups. *ACM Computing Surveys*, 24(2), pp. 195–212.
- McGeoch C.C. (1996). Toward an experimental method for algorithm simulation. *INFORMS* Journal on Computing, 8(1), pp. 1–15.
- Michiels W., Aarts E., and Korst J. (2007). Theoretical Aspects of Local Search. Monographs in Theoretical Computer Science, An EATCS Series. Springer Berlin Heidelberg.
- Montgomery D.C. (2005). Design and Analysis of Experiments. John Wiley & Sons, sixth ed.
- Montgomery D.C. and Runger G.C. (2007). Applied Statistics and Probability for Engineers. John Wiley & Sons, fourth ed.
- Nelder J.A. and Mead R. (1965). A simplex method for function minimization. *The Computer Journal*, 7(4), pp. 308–313. An Errata has been published in The Computer Journal 1965 8(1):27.
- Ovacik I.M., Rajagopalan S., and Uzsoy R. (2000). Integrating interval estimates of global optima and local search methods for combinatorial optimization problems. *Journal of Heuristics*, 6(4), pp. 481–500.
- Petruccelli J.D., Nandram B., and Chen M. (1999). Applied Statistics for Engineers and Scientists. Prentice Hall, Englewood Cliffs, NJ, USA.
- Ridge E. and Kudenko D. (2007a). Analyzing heuristic performance with response surface models: prediction, optimization and robustness. In *Proceedings of GECCO*, edited by H. Lipson, pp. 150–157. ACM.
- Ridge E. and Kudenko D. (2007b). Screening the parameters affecting heuristic performance. In *Proceedings of GECCO*, edited by H. Lipson, p. 180. ACM.
- Seber G. (2004). Multivariate observations. Wiley series in probability and statistics. John Wiley.
- Wolpert D.H. and Macready W.G. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1), pp. 67–82.

### **Empirical Methods for the Analysis of Optimization Heuristics**

#### Marco Chiarandini

Department of Mathematics and Computer Science University of Southern Denmark, Odense, Denmark www.imada.sdu.dk/~marco www.imada.sdu.dk/~marco/COMISEF08

> October 16, 2008 COMISEF Workshop