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Capital Asset Pricing Model (CAPM)

Tool for pricing an individual asset i

Individual security’s
reward-to-risk ratio

= βi · Market’s securities
reward-to-risk ratio(

E (Ri) − Rf

)
= βi ·

(
E (Rm) − Rf

)
βi sensitivity of the asset returns to market returns

Under normality assumption and least squares method:

βi =
Cov(Ri ,Rm)

Var(Rm)

Alternatively:
Rit − Rft = β0 + β1 · (Rmt − Rft)

Use more robust techniques than least squares to determine β0 and β1

[Winker, Lyra, Sharpe, 2008]
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Least Median of Squares

Yt = β0 + β1Xt + εt

ε2
t =

(
Yt − β0 − β1Xt

)2
least squares method:

min
n∑

t=1

ε2
t

least median of squares method:

min
{

median
[
ε2
t

]}
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Optimize non-differentiable, nonlinear and multimodal cost functions.
No analytical methods è optimization heuristics
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Four solutions corresponding to four different local optima
(red line: least squares; blue line: least median of squares)
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Optimization Heuristics

I Nelder-Mead

I Simulated Annealing

I Differential Evolution

11
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Nelder-Mead

Nelder-Mead simplex method [Nelder and Mead, 1965]:

I start from x1, . . . , xp+1

such that the simplex
has nonzero volume

I points are ordered
f (x1) ≤ . . . ≤ f (xp+1)

I At each iteration replace
xp+1 with a better point
among proposed zi ,
i = 1, . . . , p + 3
constructed as shown

12
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Nelder-Mead

Nelder-Mead simplex method [Nelder and Mead, 1965]:

Example:

12
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Generation of Initial Solutions

Point generators:
Left: Uniform random distribution (pseudo random number generator)

Right: Quasi-Monte Carlo method: low discrepancy sequence generator
[Bratley, Fox, and Niederreiter, 1994].
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(for other methods see spatial point process from spatial statistics)
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Simulated Annealing

Simulated Annealing (SA):
determine initial candidate solution s
set initial temperature T = T0

while termination condition is not satisfied do
while keep T constant, that is, Tmax iterations not elapsed do

probabilistically choose a neighbor s ′ of s
using proposal mechanism

accept s ′ as new search position with probability:

p(T , s, s ′) :=

{
1 if f (s ′) ≤ f (s)

exp f (s)−f (s ′)
T

otherwise

update T according to annealing schedule

14
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Simulated Annealing
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Proposal mechanism
The next candidate point is generated from a Gaussian Markov kernel
with scale proportional to the actual temperature.

Annealing schedule
logarithmic cooling schedule T = T0

ln(b i−1
Imax

cImax +e)
[Belisle (1992, p. 890)]
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Differential Evolution

Differential Evolution (DE)
determine initial population P
while termination criterion is not satisfied do

for each solution x of P do
generate solution u from three solutions of P by mutation
generate solution v from u by recombination with solution x
select between x and v solutions

I Solution representation: x = (x1, x2, . . . , xp)
I Mutation:

u = r1 + F · (r2 − r3) F ∈ [0, 2] and (r1, r2, r3) ∈ P

I Recombination:

vj =

{
uj if p < CR or j = r
xj otherwise

j = 1, 2, . . . , p

I Selection: replace x with v if f (v) is better

16
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Differential Evolution

[http://www.icsi.berkeley.edu/~storn/code.html

K. Price and R. Storn, 1995] 17
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Dealing with Uncertainty

(model) 

Representational Structure

Beliefs Chance

(stochasticity)

(*)

(often a statistical problem)

optimal decision making Optimization Heuristics

Analysis
Theoretical Empirical

Analysis

(*)

I Dodge reality to models that are amenable to mathematical solutions

I Model reality at best without constraints imposed by mathematical
complexity

19
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In the CAPM Case Study

Two research questions:

1. Optimization problem

2. Prediction problem (model assessment)

They require different ways to evaluate.

1. Given the model, find algorithm that yields best solutions.
NM vs SA vs DE

2. Given that we can solve/tune the model effectively, find the model
that yields best predictions
Least squares method vs Least median of squares method
CAPM vs others

20
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Test Data

I Data from the Dow Jones Industrial Average, period 1970-2006.

I Focus on one publicly traded stock

I Use windows of 200 days: b9313/200c = 46
I Each window is an instance from which we determine α and β
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K -Fold Cross Validation

[Stone, 1974]

If goal is estimating prediction error:

Test TrainingTrainingTrainingTraining

21 K

1. select kth part for testing

2. train on the other K − 1 parts for

3. calculate prediction error of the fitted model on the kth part

4. Repeat for k = 1, . . . ,K times and combine the K estimates of
prediction error

22
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Mathematical analysis

I Through Markov chains modelling some versions of SA, evolutionary
algorithms, ant colony optimization can be made to converge with
probability 1 to the best possible solutions in the limit [Michiels et al.,

2007].

Convergency theory is often derived by sufficient decrease.
xc current solution x ′: trial solution

simple decrease x = x ′ if f (x ′) < f (xc)
sufficient decrease x = xc if f (xc) − f (x ′) < ε

26
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Mathematical analysis

I Convergence rates on mathematically tractable functions or with
local approximations [Beyer, 2001; Bäck and Hoffmeister, 2004].

I Identification of heuristic component such that they are, for
example, “functionally equivalent” to linear transformation of the
data of the instance [Birattari et al., 2007]

I Analysis of run time until reaching optimal solution with high
probability on pseudo-boolean functions ((1+1)EA,ACO) [Gutjahr,

2008][Dorste et al. 2002, Neumann and Witt, 2006].

I No Free Lunch Theorem: For all possible performance measures, no
algorithm is better than another when its performance is averaged
over all possible discrete functions [Wolpert and Macready, 1997].

27
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Experimental Algorithmics

 (Algorithm)
Mathematical Model Simulation Program

Experiment

In empirical studies we
consider simulation
programs which are the
implementation of a
mathematical model (the
algorithm)

[McGeoch (1996), Toward

an Experimental Method

for Algorithm Simulation]

Algorithmic models of programs can vary according to their level of
instantiation:

I minimally instantiated (algorithmic framework), e.g., simulated
annealing

I mildly instantiated: includes implementation strategies (data
structures)

I highly instantiated: includes details specific to a particular
programming language or computer architecture

29
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Experimental Algorithmics

[Theoretician’s Guide to the Experimental Analysis of Algorithms

D.S. Johnson, 2002]

Do publishable work:
I Tie your paper to the literature

(if your work is new, create benchmarks).
I Use instance testbeds that support general conclusions.
I Ensure comparability.

Efficient:
I Use efficient and effective experimental designs.
I Use reasonably efficient implementations.

Convincing:
I Statistics and data analysis techniques
I Ensure reproducibility
I Report the full story.
I Draw well-justified conclusions and look for explanations.
I Present your data in informative ways.

30
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Goals of Computational Experiments

[Theoretician’s Guide to the Experimental Analysis of Algorithms

D.S. Johnson, 2002]

As authors, readers or referees, recognize the goal of the experiments and
check that the methods match the goals

I To use the code in a particular application. (Application paper)
[Interest in output for feasibility check rather than efficiency.]

I To provide evidence of the superiority of your algorithm ideas.
(Horse race paper) [Use of benchmarks.]

I To better understand the strengths, weaknesses, and operations of
interesting algorithmic ideas in practice.
(Experimental analysis paper)

I To generate conjectures about average-case behavior where direct
probabilistic analysis is too hard. (Experimental average-case paper)
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Definitions

For each general problem Π (e.g., TSP, CAPM) we denote by CΠ a set
(or class) of instances and by π ∈ CΠ a single instance.

The object of analysis are randomized search heuristics (with no
guarantee of optimality).

I single-pass heuristics: have an embedded termination, for example,
upon reaching a certain state

Eg, Construction heuristics, iterative improvement (eg, Nelder-Mead)

I asymptotic heuristics: do not have an embedded termination and
they might improve their solution asymptotically

Eg., metaheuristics

33
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Scenarios

I Univariate: Y
Asymptotic heuristics in which:

Y=X and time limit is an external parameter decided a priori

Y=T and solution quality is an external parameter decided a priori (Value
To be Reached, approximation error)

I Bivariate: Y = (X ,T )

I Single-pass heuristics

I Asymptotic heuristics with idle iterations as termination condition

I Multivariate: Y = X (t)

I Development over time of cost for asymptotic heuristics

34
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Generalization of Results

On a specific instance, the random variable Y that defines the
performance measure of an algorithm is described by its probability
distribution/density function

Pr(Y = y | π)

It is often more interesting to generalize the performance
on a class of instances CΠ, that is,

Pr(Y = y ,CΠ) =
∑
π∈Π

Pr(Y = y | π)Pr(π)

35
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Sampling

In experiments,

1. we sample the population of instances and

2. we sample the performance of the algorithm on each sampled
instance

If on an instance π we run the algorithm r times then we have r
replicates of the performance measure Y , denoted Y1, . . . ,Yr , which are
independent and identically distributed (i.i.d.), i.e.

Pr(y1, . . . , yr |π) =

r∏
j=1

Pr(yj | π)

Pr(y1, . . . , yr ) =
∑
π∈CΠ

Pr(y1, . . . , yr | π)Pr(π).

36
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Measures and Transformations

On a class of instances

Computational effort indicators

I process time (user + system time, no wall time).
it is reliable if process takes > 1.0 seconds

I number of elementary operations/algorithmic iterations (e.g., search
steps, cost function evaluations, number of visited nodes in the
search tree, etc.)

I no transformation if the interest is in studying scaling

I no transformation if instances from an homogeneously class

I standardization if a fixed time limit is used

I geometric mean (used for a set of numbers whose values are meant
to be multiplied together or are exponential in nature)

37
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Measures and Transformations

On a class of instances

Solution quality indicators
Different instances è different scales è need for invariant measures

I Distance or error from a reference value (assume minimization):

e1(x , π) =
x(π) − x̄(π)bσ(π)

standard score

e2(x , π) =
x(π) − xopt(π)

xopt(π)
relative error

e3(x , π) =
x(π) − xopt(π)

xworst(π) − xopt(π)
invariant error [Zemel, 1981]

I optimal value computed exactly or known by instance construction
I surrogate value such bounds or best known values

I Rank (no need for standardization but loss of information)
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View of raw data aggregated for the 4 instances
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View of raw data ranked within instances
and aggregated for the 4 instances
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The trade off computation time vs sol quality. Raw data.
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The trade off computation time vs sol quality.
Solution quality ranked within the instances and
computation time in raw terms
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Variance Reduction Techniques

[McGeoch 1992]

I Same instances

I Same pseudo random seed

I Common quantity for every random quantity that is positively
correlated with the algorithms

Variance of the original performance will not vary but the variance of the
difference will decrease because covariance =0

Subtract out a source of random noise if its expectation is known and it
is positively correlated with outcome (eg, initial solution, cost of simple
algorithm)

X ′ = X + (R − E [R])
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I Which algorithm solves best our problem? (RRNM, SA, DE)
(categorical)

I Which values should be assigned to the parameters of the
algorithms? Eg, how many restarts of NM? Which temperature in
SA? (numerical)

I How many times should we have random restart before chances to
find better solutions become irrelevant?
(numerical, integer)

I Which is the best way to generate initial solutions? (categorical)
Theoretical motivated question: Which is the tradeoff point, where
quasi random is not anymore helpful?

I Do instances that come from different applications of Least Median
of Squares need different algorithm? (Instance families separation)

I ... 49
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ANOVA
Regression Trees
Racing methods
Search Methods
Response Surface MethodsOrganization of the Experiments

Questions:

I What (input, program) parameters to control?

I Which levels for each parameter?

I What kind of experimental design?

I How many sample points?

I How many trials per sample point?

I What to report?

I Sequential or one-shot trials?

Develop an experimental environment, run pilot tests
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Regression Trees
Racing methods
Search Methods
Response Surface MethodsWork Done

I ANOVA

I Regression trees [Bartz-Beielstein and Markon, 2004]

I Racing algorithms [Birattari et al., 2002]

I Search approaches
[Minton 1993, 1996, Cavazos & O’Boyle 2005],
[Adenso-Diaz & Laguna 2006, Audet & Orban 2006][Hutter et al., 2007]

I Response surface models, DACE
[Bartz-Beielstein, 2006; Ridge and Kudenko, 2007a,b]
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ANOVA
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Racing methods
Search Methods
Response Surface MethodsSources of Variance

I Treatment factors:

I A1,A2, . . . ,Ak algorithm factors: initial solution, temperature, ...
I B1,B2, . . . ,Bm instance factors: structural differences, application,

size, hardness, ...

I Controllable nuisance factors:

I I1, I2, . . . , In single instances
I algorithm replication

〈 algorithm
factors

/ instance
factors

/ number of
instances

/ number of
runs

〉
〈〈〈-///-///1///r〉〉〉 〈〈〈k///-///1///r〉〉〉
〈〈〈-///-///n///1〉〉〉 〈〈〈k///-///n///1〉〉〉

〈〈〈-///m///n///1〉〉〉 〈〈〈k///m///n///1〉〉〉
〈〈〈k///-///n///r〉〉〉
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ANOVA
Regression Trees
Racing methods
Search Methods
Response Surface MethodsThe Random Effect Design

I Factors: 〈〈〈-///-///n///r〉〉〉
Instance: 10 instances randomly sampled from a class
Replicates five runs of RRNM on the 10 instances from the class

I Response:

Quality: solution cost or transformations thereof

Yil = µ+ Ii + εil ,

where

– µ an overall mean,

– Ii a random effect of instance i , [i.i.d. N (0, σ2
τ)]

– εil a random error for replication l [i.i.d. N (0, σ2)]
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ANOVA
Regression Trees
Racing methods
Search Methods
Response Surface MethodsRandom vs Blocking Factors

Yil = µ+ Ii + εil

Random
Ii a random effect of instance i

Yil |Ii ∼ N (µ+ Ii , σ2 )
Yil ∼ N (µ , σ2 + σ2

I )

We draw conclusions on the entire
population of levels

⇓
corresponds to looking at

Pr(y)

Blocking
τi the fixed effect of instance i

Yil |Ii ∼ N (µ+ Ii , σ2)
Yil ∼ N (µ+ Ii , σ2)

The results hold only for those levels
tested

⇓
corresponds to looking at

Pr(y |π)
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ANOVA
Regression Trees
Racing methods
Search Methods
Response Surface MethodsThe Mixed Effects Design

I Factors: 〈〈〈k///-///n///r〉〉〉

Algorithm: {RRNM,SA,DE}
Instance: 10 instances randomly sampled from a class
Replicates five runs per algorithm on the 10 instances from the class

I Response:

Quality: solution cost or transformations thereof

Yijl = µ+ Aj + Ii + γij + εijl

– µ an overall mean,

– Aj a fixed effect of the algorithm j ,

– Ii a random effect of instance i , [i.i.d. N (0, σ2
τ)]

– γij a random interaction instance–algorithm, [i.i.d. N (0, σ2
γ)]

– εijl a random error for replication l of alg. j on inst. i [i.i.d. N (0, σ2)]
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ANOVA
Regression Trees
Racing methods
Search Methods
Response Surface MethodsReplicated or Unreplicated?

Which is the best design?

3 runs × 10 instances = 30 experiments
(replicated design) 〈〈〈k///-///n///r〉〉〉

OR

1 runs × 30 instances = 30 experiments
(unreplicated design) 〈〈〈k///-///n///1〉〉〉

If possible, 〈〈〈k///-///n///1〉〉〉 is better:

I it minimizes the variance of the estimates [Birattari, 2004]

I blocking and random design correspond mathematically
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ANOVA
Regression Trees
Racing methods
Search Methods
Response Surface MethodsThe Factorial Nested Design

I Factors: 〈〈〈-///m///n///r〉〉〉

Instance Factors: Application = {Random, Dow Jones}
Instance: four instances randomly sampled from a class
Replicates 3 runs per algorithm on the 4 instances from the class

I Response:

Quality: solution cost or transformations thereof

Class 1 (Random) Class 2 (Dow Jones)
Instances 1 2 3 4 5 6 7 8

Observations Y111 Y121 Y131 Y141 Y251 Y261 Y271 Y281

Y112 Y122 Y132 Y142 Y252 Y262 Y272 Y282

Y113 Y123 Y133 Y143 Y253 Y263 Y273 Y283
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ANOVA
Regression Trees
Racing methods
Search Methods
Response Surface MethodsThe Factorial Nested Design

I Factors: 〈〈〈-///m///n///r〉〉〉

Instance Factors: Application = {Random, Dow Jones}
Instance: four instances randomly sampled from a class
Replicates 3 runs per algorithm on the 4 instances from the class

I Response:

Quality: solution cost or transformations thereof

Yijl = µ+ Bj + Ii(j) + εijl

I µ an overall mean,

I Bj a fixed effect of the feature j ,

I Ii(j) a random effect of the instance i nested in j
I εijl a random error for replication l on inst. i nested in j

58



Outline
Introduction

Analysis of Heuristics
Algorithm Comparisons
Performance Modelling

Summary

ANOVA
Regression Trees
Racing methods
Search Methods
Response Surface MethodsAn Example for CAPM

Study on Random Restart Nelder-Mead for CAPM

Factors:

Factor Type Levels

initial.method Categorical {random, quasi-random}
max.reinforce Integer {1;3;5}
alpha Real {0.5;1;1.5}
beta Real {0;0.5;1}
gamma Real {1.5;2;2.5}

Instances: 20 randomly sampled from the Dow Jones application
Replicates: only one per instance

Response measures

I time is similar for all configurations because we stop after 500
random restart

I measure solution cost
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I Main problem is heteroschdasticity
I Possible transformations: ranks + likelihood based Box-Cox
I Only max.reinforce is not significant, all the rest is
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Recursive partitioning: Some history: AID, [Morgan and Sonquist, 1963],
CHAID [Kass 1980], CART [Breiman, Friedman, Olshen, and Stone 1984]

C4.5 [Quinlan 1993].

Conditional inference trees estimate a regression relationship by
binary recursive partitioning in a conditional inference framework.

[Hothorn, Hornik, and Zeileis, 2006]

Step 1: Test the global null hypothesis of independence between
any of the input variables and the response.
Stop if this hypothesis cannot be rejected.

Otherwise test for the partial null hypothesis of a single
input variable and the response.

Select the input variable with most important p-value

Step 2: Implement a binary split in the selected input variable.

Step 3: Recursively repeat steps 1) and 2).
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s.beta
p < 0.001

1

≤≤ 0 >> 0

s.alpha
p < 0.001

2

≤≤ 0.5 >> 0.5

n = 360
y = 88.794

3
factor(s.initial.method)

p = 0.003

4

randomquasi−random

n = 360
y = 117.553

5
n = 360

y = 110.381

6

s.alpha
p < 0.001

7

≤≤ 0.5 >> 0.5

s.gamma
p < 0.001

8

≤≤ 2 >> 2

factor(s.initial.method)
p < 0.001

9

quasi−randomrandom

n = 240
y = 113.821

10
n = 240

y = 92.513

11

factor(s.initial.method)
p < 0.001

12

randomquasi−random

n = 120
y = 98.417

13
n = 120

y = 48.942

14

s.beta
p < 0.001

15

≤≤ 0.5 >> 0.5

ordered(s.max.reinforce)
p < 0.001

16

≤≤ 3 >> 3

factor(s.initial.method)
p < 0.001

17

randomquasi−random

n = 240
y = 43.133

18
n = 240

y = 29.45

19

n = 240
y = 52.946

20

factor(s.initial.method)
p < 0.001

21

randomquasi−random

n = 360
y = 88.475

22
n = 360

y = 57.936

23

65

Outline
Introduction

Analysis of Heuristics
Algorithm Comparisons
Performance Modelling

Summary

ANOVA
Regression Trees
Racing methods
Search Methods
Response Surface MethodsOutline

1. Introduction
CAPM
Optimization Heuristics

2. Analysis of Optimization Heuristics
Theoretical Analysis
Empirical Analysis
Scenarios of Analysis

3. Tools and Techniques for Algorithm Configuration
ANOVA
Regression Trees
Racing methods
Search Methods
Response Surface Methods

4. Performance Modelling
Run Time
Solution Quality

5. Summary

66



Outline
Introduction

Analysis of Heuristics
Algorithm Comparisons
Performance Modelling

Summary

ANOVA
Regression Trees
Racing methods
Search Methods
Response Surface MethodsRacing Methods

I Idea from model selection problem in machine learning

I Sequential testing:
configurations are discarded as soon as statistical evidence arises

I Based on full factorial design

Procedure Race [Birattari, 2005]: 〈〈〈k///-///n///1〉〉〉
repeat

Randomly select an unseen instance
Execute all candidates on the chosen instance
Compute all-pairwise comparison statistical tests
Drop all candidates that are significantly inferior to the best algorithm

until only one candidate left or no more unseen instances ;

Statistical tests:

I t test, Friedman 2-ways analysis of variance (F-Race)

I all-pairwise comparisons è p-value adjustment (Holm, Bonferroni)
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Race name.......................NM for Least Median of Squares
Number of candidates........................................162
Number of available tasks....................................45
Max number of experiments..................................3240
Statistical test..................................Friedman test
Tasks seen before discarding..................................5
Initialization function......................................ok
Parallel Virtual Machine.....................................no

x No test is performed.
- The test is performed and some candidates are discarded.
= The test is performed but no candidate is discarded.

+-+-----------+-----------+-----------+-----------+-----------+
| | Task| Alive| Best| Mean best| Exp so far|
+-+-----------+-----------+-----------+-----------+-----------+
|x| 1| 162| 81| 2.869e-05| 162|
...
|x| 4| 162| 140| 2.887e-05| 648|
|-| 5| 52| 140| 3.109e-05| 810|
|=| 6| 52| 34| 3.892e-05| 862|
...
|=| 45| 13| 32| 4.55e-05| 1742|
+-+-----------+-----------+-----------+-----------+-----------+

Selected candidate: 32 mean value: 4.55e-05
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...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

quasi−random−1−1.5−0.5−1.5

random−1−1−0.5−2.5

quasi−random−5−1.5−0.5−2

quasi−random−3−1−1−1.5

quasi−random−5−1.5−1−1.5

random−3−0.5−0−2.5

quasi−random−3−1.5−1−1.5

quasi−random−1−1−1−1.5

random−1−1.5−1−2

random−1−0.5−0−1.5

random−5−1.5−0.5−1.5

quasi−random−1−0.5−0.5−1.5

random−1−1.5−0−2

quasi−random−3−0.5−0.5−2

random−5−0.5−0.5−1.5

quasi−random−3−1.5−0−2.5

random−3−1−0.5−1.5

quasi−random−5−1−0−1.5

random−3−1−1−1.5

random−5−1−1−1.5

quasi−random−5−0.5−0.5−1.5

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

NM for Least Median of Squares  (45 Instances)

Stage
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Full factorial design is still costly è Simple idea: random sampling design

Step 1: Sample Nmax points in the parameter space according to
a prior probability PX (d-variate uniform distribution).

Step 2: Execute the race

Step 3: PX becomes a sum of normal
distributions centered around each N survivors with
parameters: µs = (µs1 , . . . , µsd ) and σs = (σs1 , . . . , σsd )

At each iteration t reduce the variance: σt
sk = σt−1

sk ( 1
N )

1
d

Sample each of Nmax − N s points from the parameter
space:
a) select a d-variate normal distribution N (µs , σs) with
probability

Pz =
N s − z + 1

N s(N s + 1)/2
, z is rank of s

b) sample the point from this distribution
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Initial conditions linked to parameters

σ2
sk =

maxk − mink

2

Stopping conditions for intermediate races:

I when Nmin (= d) configurations remain

I when computational budget B is finished (B = Btot

5 )

I Imax instances seen
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The Tuning problem is a Mixed variables stochastic optimization problem

[Hutter, Hoos, and Stützle, 2007]

The space of parameters Θ is discretized and a combinatorial
optimization problem solved by means of iterated local search

Procedure ParamILS
Choose initial parameter configuration θ ∈ Θ
Perform subsidiary local search from θ

while time left do
θ ′ := θ perform perturbation on θ
perform subsidiary local search from θ

based on acceptance criterion,
keep θ or revert θ := θ ′

with probability PR restart from a new θ from Θ
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ParamILS components:

I Initialization: Pick a configuration (θ1, . . . , θp) ∈ Θ according to
d -variate uniform distribution.

I Subsidiary local search: iterative first improvement, change one
parameter in each step

I Perturbation: change s randomly chosen parameters

I Acceptance criterion: always select better local optimum
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Evaluation of a parameter configuration θ:

I Sample N instances from given set (with repetitions)

I For each of the N instances:

I Execute algorithm with configuration θ

I Record scalar cost of the run (user-defined: e.g. run-time, solution
quality, ...)

I Compute scalar statistic cN (θ) of the N costs
(user-defined: e.g. empirical mean, median, ...)

Note: N is a crucial parameter. In an enhanced version, N (θ) is
increased for good configurations and decreased for bad ones at run-time.
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I All algorithms solving these problems have parameters in their own
and tuning them is paradoxical

I It is crucial finding methods that minimize the number of evaluations
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[Kutner et al., 2005; Montgomery, 2005; Ridge and Kudenko, 2007b,a]

In optimizing a stochastic function
direct search methods, such as NM, SA, DE and ParamILS,

I are derivative free
I do not attempt to model

Response Surface Method (RSM) tries to build a model of the surface
from the sampled data.

Procedure:
I Model the relation between most important algorithm parameters,

instance characteristics and responses.
I Optimize the responses based on this relation

Two steps:

I screening
I response surface modelling
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Used to identify the parameters that are not relevant
to include in the RSM

I Fractional factorial design

I Collect data

I Fit model: first only main effects, then add interactions, then
quadratic terms, continue until resolution allows, compare terms
with t-test.

I Diagnostic + transformations
Method by [Box and Cox, 1964] to decide the best transformation on
the basis of likelihood function

I Rank factor effect coefficients and assess significance
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ANOVA model for three factors:

Yi = β0+β1Xi1+β2Xi2+β3Xi3+β12Xi12+β13Xi13+β23Xi23+β123Xi123+εi

I Study factors at only two levels è 2k designs

numerical real
numerical integer

categorical

 encoded as − 1, 1

I Single replication per design point

I High order interactions are likely to be of little
consequence è confound with each other

Treat. X1 X2 X3
1 −1 −1 −1
2 1 −1 −1
3 −1 1 −1
4 1 1 −1
5 −1 −1 1
6 1 −1 1
7 −1 1 1
8 1 1 1
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Yi = β0Xi0+β1Xi1+β2Xi2+β3Xi3+β12Xi12+β13Xi13+β23Xi23+β123Xi123+εi

Treat. X0 X1 X2 X3 X12 X13 X23 X123
1 1 −1 −1 −1 1 1 1 −1
2 1 1 −1 −1 −1 −1 1 1
3 1 −1 1 −1 −1 1 −1 1
4 1 1 1 −1 1 −1 −1 −1
5 1 −1 −1 1 1 −1 −1 1
6 1 1 −1 1 −1 1 −1 −1
7 1 −1 1 1 −1 −1 1 −1
8 1 1 1 1 1 1 1 1

I 2k−f , k factors, f fraction

I 23−1 if X0 confounded with X123 (half-fraction design)
but also X1 = X23, X2 = X13, X3 = X12

I 23−2 if X0 confounded with X23 81
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Resolution is the number of factors involved in the lowest-order effect in
the defining relation

Example:
R = V è 25−1

V è X0 = X12345

R = III è 26−2
III è X0 = X1235 = X123 = X456

R ≥ III in order to avoid confounding of main effects

It is not so simple to identify defining relation with the maximum
resolution, hence they are catalogued

A design can be augmented by folding over, that is, reversing all signs
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Differential Evolution for CAPM

I Termination condition: Number of idle iterations

I Factors:
Factor Type Low (−) High (−)

NP Number of population members Int 20 50
F weighting factor Real 0 2
CR Crossover probability from interval Real 0 1
initial An initial population Cat. Uniform Quasi MC
strategy Defines the DE variant used in mutation Cat. rand best
idle iter Number of idle iteration before terminating Int. 10 30

I Performance measures:
I computational cost: number of function evaluations
I quality: solution cost

I Blocking on 5 instances è design replicates è 26 · 5 = 320
Fractional Design: 26−2

IV · 5 = 80
main effects and second order interactions not confounded.
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instance NP F CR initial strategy idleiter value time nfeval
1 1 -1 -1 -1 -1 -1 -1 5.358566e-05 0.216 440
2 1 1 -1 -1 -1 1 -1 5.564804e-05 0.448 880
3 1 -1 1 -1 -1 1 1 6.803661e-05 0.660 1240
4 1 1 1 -1 -1 -1 1 6.227293e-05 1.308 2480
5 1 -1 -1 1 -1 1 1 4.993460e-05 0.652 1240
6 1 1 -1 1 -1 -1 1 4.993460e-05 1.305 2480
7 1 -1 1 1 -1 -1 -1 5.869048e-05 0.228 440
8 1 1 1 1 -1 1 -1 6.694168e-05 0.448 880
9 1 -1 -1 -1 1 -1 1 5.697797e-05 0.676 1240
10 1 1 -1 -1 1 1 1 7.267454e-05 1.308 2480
11 1 -1 1 -1 1 1 -1 2.325979e-04 0.220 440
12 1 1 1 -1 1 -1 -1 9.098808e-05 0.452 880
13 1 -1 -1 1 1 1 -1 8.323734e-05 0.228 440
14 1 1 -1 1 1 -1 -1 6.015744e-05 0.460 880
15 1 -1 1 1 1 -1 1 6.244267e-05 0.668 1240
16 1 1 1 1 1 1 1 5.348372e-05 1.352 2480
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rank

−1|−1|−1|1|−1|1

−1|−1|1|−1|1|1

1|−1|1|−1|−1|1

1|1|1|1|1|1

−1|−1|−1|−1|−1|−1

1|−1|1|1|−1|−1

−1|−1|1|1|1|−1

1|−1|−1|−1|1|−1

−1|1|1|−1|−1|−1

1|1|1|−1|1|−1

1|1|−1|−1|−1|1

−1|1|−1|−1|1|1

−1|1|1|1|−1|1

1|−1|−1|1|1|1

1|1|−1|1|−1|−1

−1|1|−1|1|1|−1

5 10 15

●

●

●

●
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Call:

lm(formula = (rank^(1.2) - 1)/1.2 ~ (NP + F + CR + ini-

tial +

strategy + idleiter + instance)^2 - 1, data = DE)

Residuals:

Min 1Q Median 3Q Max

-10.277 -1.959 1.056 6.423 13.979

Coefficients: (8 not defined because of singularities)

Estimate Std. Error t value Pr(>|t|)

NP -1.32447 1.76772 -0.749 0.4566

F 3.40635 1.76772 1.927 0.0587 .

CR -2.21180 1.76772 -1.251 0.2157

initial 2.47629 1.76772 1.401 0.1664

strategy 1.47545 1.76772 0.835 0.4072

idleiter -1.81289 1.76772 -1.026 0.3092

instance 2.85013 0.22727 12.541 <2e-

16 ***

NP:F -1.84492 0.75376 -2.448 0.0173 *

NP:CR -1.92013 0.75376 -2.547 0.0134 *

NP:initial -0.62881 0.75376 -0.834 0.4075

NP:strategy -0.96685 0.75376 -1.283 0.2045

NP:idleiter 0.54652 0.75376 0.725 0.4712

NP:instance 0.46387 0.53299 0.870 0.3876

F:initial -0.29205 0.75376 -0.387 0.6998

F:idleiter -0.61857 0.75376 -0.821 0.4151

F:instance 0.01824 0.53299 0.034 0.9728

CR:instance -0.12302 0.53299 -0.231 0.8182

initial:instance -0.29898 0.53299 -0.561 0.5769

strategy:instance -0.28582 0.53299 -0.536 0.5938

idleiter:instance 0.05713 0.53299 0.107 0.9150

--

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 ’ ’ 1

Call:

lm(formula = (nfeval^2 - 1)/2 ~ (NP + F + CR + initial + strategy +

idleiter + instance)^2 - 1, data = DE)

Residuals:

Min 1Q Median 3Q Max

-393454 -98364 196727 491818 786909

Coefficients: (8 not defined because of singularities)

Estimate Std. Error t value Pr(>|t|)

NP 6.492e+05 1.397e+05 4.648 1.89e-05 ***

F 1.661e-12 1.397e+05 1.19e-17 1

CR -1.624e-10 1.397e+05 -1.16e-15 1

initial 2.584e-11 1.397e+05 1.85e-16 1

strategy -9.993e-11 1.397e+05 -7.15e-16 1

idleiter 8.400e+05 1.397e+05 6.014 1.17e-07 ***

instance 2.951e+05 1.796e+04 16.432 < 2e-16 ***

NP:F -8.736e-12 5.956e+04 -1.47e-16 1

NP:CR 2.430e-11 5.956e+04 4.08e-16 1

NP:initial 1.737e-11 5.956e+04 2.92e-16 1

NP:strategy 1.603e-11 5.956e+04 2.69e-16 1

NP:idleiter 5.040e+05 5.956e+04 8.462 8.02e-12 ***

NP:instance 8.712e-11 4.212e+04 2.07e-15 1

F:initial -1.663e-11 5.956e+04 -2.79e-16 1

F:idleiter 3.122e-11 5.956e+04 5.24e-16 1

F:instance -5.101e-12 4.212e+04 -1.21e-16 1

CR:instance 5.035e-11 4.212e+04 1.20e-15 1

initial:instance -2.903e-12 4.212e+04 -6.89e-17 1

strategy:instance 3.272e-11 4.212e+04 7.77e-16 1

idleiter:instance 7.097e-11 4.212e+04 1.69e-15 1

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 ' ' 1
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Factor Estimate effect F-test Estimate F-test
cost effect time effect

F 3.40635 . 1.661e-12
CR -2.21180 -1.624e-10
initial 2.47629 2.584e-11
idleiter -1.81289 8.400e+05 ***
strategy 1.47545 -9.993e-11
NP -1.32447 6.492e+05 ***

However, screening ignore possible curvatures è augment design by
replications at the center points
If lack of fit then there is curvature in one or more factors è more
experimentations is needed
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I considers only quantitative factors è repeat analysis for all
categorical factors

I levels Xj of the j th factor are coded as:

Xj =
actual level − high level+low level

2

high level−low level
2
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Designs for estimating second-order term response surface models:
Rotatability: equal precision at any distance from the center point.
(σ2{Yh } is the same at any Xh)
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X1

X
2

number of experiments = 2k−f nc corner points + kns star points + n0

Decide nc,ns ,no considering power and computational cost
[Lenth, R. V. (2006). Java Applets for Power and Sample Size (Computer

software). http://www.stat.uiowa.edu/~rlenth/Power.]
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Analysis of response surface experiments

I estimate response function by general linear regression for each
response variable. Hierarchical approach, backward elimination.

I interpret the model by visualization
3D surface, contour plots, conditional effects plots, overlay contour plots

I identification of optimum operating conditions (or sequential search
for optimum conditions)

I desirability function di(Yi) : R 7→ [0, 1]:

di(Yi) =


1 if bYi(x) < T (target value)bYi(x)−Ui

Ti−Ui
if Ti ≤ bYi(x) ≤ Ui

0 if bYi(x) > Ui

I minimize
`∏k

i=1 di

´1/k
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SA for CAPM

Factor Low (−) High (−)

Eval Max number of evaluations 10000 30000
Temp Starting temperature for the cooling schedule 5 15
Tmax Function evaluations at each temperature 50 150

I We use an inscribed central composite design with 4 replicates at
the center è 18 points

I 10 replicates for each of the 18 points blocking on 10 different
instances.
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The Design in Encoded Variables (internal central composite design)

X1 X2 X3
1 -0.7071068 -0.7071068 -0.7071068
2 0.7071068 -0.7071068 -0.7071068
3 -0.7071068 0.7071068 -0.7071068
4 0.7071068 0.7071068 -0.7071068
5 -0.7071068 -0.7071068 0.7071068
6 0.7071068 -0.7071068 0.7071068
7 -0.7071068 0.7071068 0.7071068
8 0.7071068 0.7071068 0.7071068
9 -1.0000000 0.0000000 0.0000000
10 1.0000000 0.0000000 0.0000000
11 0.0000000 -1.0000000 0.0000000
12 0.0000000 1.0000000 0.0000000
13 0.0000000 0.0000000 -1.0000000
14 0.0000000 0.0000000 1.0000000
15 0.0000000 0.0000000 0.0000000
16 0.0000000 0.0000000 0.0000000
17 0.0000000 0.0000000 0.0000000
18 0.0000000 0.0000000 0.0000000
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> sa.q <- stepAIC(lm(scale ~ ((Eval * Temp * Tmax) + I(Eval^2) +

+ I(Eval^3) + I(Temp^2) + I(Temp^3) + I(Tmax^2) + I(Tmax^3)),

+ data = SA), trace = FALSE)

> sa.q$anova

Stepwise Model Path

Analysis of Deviance Table

Initial Model:

scale ~ ((Eval * Temp * Tmax) + I(Eval^2) + I(Eval^3) + I(Temp^2) +

I(Temp^3) + I(Tmax^2) + I(Tmax^3))

Final Model:

scale ~ Temp + I(Eval^2) + I(Temp^3) + I(Tmax^2)

Step Df Deviance Resid. Df Resid. Dev AIC

1 166 149.6135 -5.282312

2 - I(Temp^2) 1 0.01157123 167 149.6250 -7.268391

3 - I(Tmax^3) 1 0.49203977 168 150.1171 -8.677435

4 - I(Eval^3) 1 0.97771081 169 151.0948 -9.508898

5 - Eval:Temp:Tmax 1 1.36868574 170 152.4635 -9.885717

6 - Temp:Tmax 1 0.21569471 171 152.6792 -11.631245

7 - Eval:Tmax 1 0.34530754 172 153.0245 -13.224607

8 - Tmax 1 1.09116851 173 154.1157 -13.945639

9 - Eval:Temp 1 1.17697426 174 155.2926 -14.576210

10 - Eval 1 0.53324991 175 155.8259 -15.959178
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> sa.t <- stepAIC(lm(time ~ ((Eval * Temp * Tmax) + I(Eval^2) +

+ I(Eval^3) + I(Temp^2) + I(Temp^3) + I(Tmax^2) + I(Tmax^3)),

+ data = SA), trace = FALSE)

> sa.t$anova

Stepwise Model Path

Analysis of Deviance Table

Initial Model:

time ~ ((Eval * Temp * Tmax) + I(Eval^2) + I(Eval^3) + I(Temp^2) +

I(Temp^3) + I(Tmax^2) + I(Tmax^3))

Final Model:

time ~ Eval + I(Eval^2) + I(Tmax^2)

Step Df Deviance Resid. Df Resid. Dev AIC

1 166 5.033365 -615.8363

2 - Eval:Temp:Tmax 1 0.0007938000 167 5.034159 -617.8079

3 - I(Temp^3) 1 0.0012386700 168 5.035397 -619.7636

4 - I(Tmax^3) 1 0.0020043172 169 5.037402 -621.6920

5 - Eval:Tmax 1 0.0020402000 170 5.039442 -623.6191

6 - I(Eval^3) 1 0.0062009141 171 5.045643 -625.3977

7 - Temp:Tmax 1 0.0062658000 172 5.051909 -627.1743

8 - Tmax 1 0.0005494828 173 5.052458 -629.1548

9 - Eval:Temp 1 0.0071442000 174 5.059602 -630.9004

10 - Temp 1 0.0001133300 175 5.059716 -632.8964

11 - I(Temp^2) 1 0.0137637556 176 5.073479 -634.4074
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Quality:
(Intercept) Temp I(Eval^2) I(Temp^3) I(Tmax^2)
-0.3318884 -0.7960063 0.4793772 1.0889321 0.5162880

Computation Time:
(Intercept) Eval I(Eval^2) I(Tmax^2)
4.13770000 2.02807697 -0.05713333 -0.06833333

Desirability function approach:

min
( k∏

i=1

di

)1/k

≈
(

q̂uality · t̂ime
)1/2
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Conclusions:

I Eval=0, Temp=0.5, Tmax=0 (encoded variables)
I Eval=20000, Temp=13, Tmax=100
I But this is just only a local optimum!
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ANOVA

− works well only if few factors

− analysis can be rather complicated

Regression Trees

+ very intuitive visualization of results

− require full factorial and no nesting

− problems with blocking

− black box and not used so far

Response Surface Methods:

− only for numerical parameters

− not automatic but interactive and time consuming

− restricted to analysis with crossing factors
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Search methods

+ fully automatic (black box)

+ allow a very large search space

+ can handle nesting on algorithm factors

− not statistically sound

− Too many free parameters (paradoxical)

Race

+ fully automatic

+ statistically sound

+ can handle very well nesting on the algorithm factors

− indentifies the best but does not provide factorial analysis

− might still be lengthy but faster variants exists

− handles only univariate case, but bivariate examples exists [den

Besten, 2004]
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Analysis Scenarios

If the analysis scenario allows we can gain more precise insights by
distribution modelling:

Minimum
Known

Minimum
Unknown

Run
Time

(VTR or gap)
Restart Strategies

Time or idle iterations
as parameters

(see previous part)

Solution
Quality

−− Estimation of Optima

It is good to keep always in mind what case one is considering
I 〈〈〈-///-///1///r〉〉〉
I 〈〈〈-///-///n///1〉〉〉
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Characterization of Run-time

Parametric models used in the analysis of run-times to:

I provide more informative experimental results

I make more statistically rigorous comparisons of algorithms

I exploit the properties of the model
(eg, the character of long tails and completion rate)

I predict missing data in case of censored distributions

I better allocation of resources

I Restart strategies [Gagliolo and Schmidhuber, 2006]
I Algorithm portfolios (multiple copies of the same algorithm in

parallel) [Gomes and Selman 2001, Gagliolo and Schmidhuber, 2008]
I Anytime algorithms (estimate the quality given the input and the

amount of time that they will be executed) [Boddy and Dean, 1989]

Restart strategy: a sequence of cutoff times T (k) for each restart k
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Restart Strategies

〈〈〈-///-///1///r〉〉〉
Theorem: [Luby, Sinclair, and Zuckerman, 1993]

If the RTD of an instance is known

⇓
optimal restart strategy is uniform, that is,
it is based on constant cutoff, T (r) = T ∗

To find T ∗:
minimize expected value of total run time tT which is given by:

E(tT ) =
T −

∫T
0

F (τ)dτ

F (T )

Two issues:

1. the theorem is valid only for one instance

2. F (t) is the cdf of the run-time t of an unbounded run of the algorithm
which is not know and its estimation might be costly
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Distribution Modelling

We accept two approximations:

1. we generalize to a class of instances accepting that instances might
be similar

2. we use F̂ (t) estimated from data, if necessary, censored.

Three offline methods:

A: modelling the full distribution

B: modelling the distribution with censored data

C: modelling the tails (extreme value statistics)

Procedure:

I choose a model, i.e., probability function f (x , θ)
I apply fitting method to determine the parameters

Eg, maximum likelihood estimation method

I test the model (Kolmogorov-Smirnov goodness of fit tests)
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Some Parametric Distributions

The distributions used are [Frost et al., 1997; Gomes et al., 2000]:
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Run Time Distributions

Motivations for these distributions:

I qualitative information on the completion rate (= hazard function)

I empirical good fitting

Most of the work on RTDs is on SAT or CSP instances and 〈〈〈-///-///1///r〉〉〉
For complete backtracking algorithms:

I shown to be Weibull or lognormal distributed on CSP [Frost et al., 1997]

I shown to have heavy tails on CSP and SAT [Gomes et al., 1997]

For stochastic local search algorithms:

I shown to have mixture of exponential distributions [Hoos, 2002]
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Model Fitting in Practice

Which parametric family of models is best for our data?

I underlying knowledge

I try to make plots that should be linear. Departures from linearity of
the data can be easily appreciated by eye.

Example: for an exponential distribution, it is:

log S (t) = −λt , where S (t) = 1 − F (t) survivor function

hence the plot of log S (t) against t should be linear.

Similarly, for the Weibull
the cumulative hazard function is linear on a log-log plot
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Application Example

Difficulties in the application to the CAPM case:

I The best algorithm is random restart Nelder-Mead
(which already uses restart!)

I SA and DE never reach the solutions returned by RRNM hence all
runs would be censored!

I Optimum unknown. Deciding a VTR or a gap: Which one? Why?

I In these cases the analysis provided before is enough to tell us when
to restart.
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Example on CSP
Characterization of Run-time

Two algorithms for a CSP problem. 50 runs on a single instance with
time limit 100 seconds.
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Example on CSP
Characterization of Run-time

Two algorithms for a CSP problem. 50 runs on a single instance with
time limit 100 seconds.
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Characterization of Run-time
Example

Distribution fitting
f (t , θ) probability density function of solution time t with parameter θ.
Maximum likelihood method:

max
θ

L(T1,T2, . . . ,Tk | θ) =

k∏
i

Pr(Ti | θ) =

k∏
i=1

f (Ti | θ)

Example: f () exponential or Weibull
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I grey curve: Weibull
distributed with KS test
p-value 0.4955

I black curve: exponential
distributed with KS test
p-value 0.3470
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B: Fitting Censored Distributions

Type I censor sampling:
decide a cutoff time tc and stop experiments that exceed that cutoff
Using indicator function δi :

L(T |θ) =

k∏
i=1

f (Ti |θ)
δi

( ∫∞
tc

f (τ|θ)dτ
)1−δi

Type II censor sampling:
r experiments are run in parallel and stopped whenever u uncensored
samples are obtained.
Thus, c = (r − u)/r are set in advance, and tc is equal to time of uth
fastest.
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Example on CSP

〈〈〈-///-///1///r〉〉〉
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Application Example
Learning Restart Strategy

[Impact of Censored Sampling on the Performance of Restart Strategies

Gagliolo & Schmidhuber, CP 2006]
〈〈〈-///-///n///r〉〉〉

Use the following learning scheme based on Type II censoring to estimate bF :

I pick n = 50 instances at random and start r = 20 runs with different seed
on each instance è k = nr experiments

I fix a censoring threshold c ∈ [0, 1].
As the first b(1 − c)kc runs terminate, stop also the remaining dcke.

I data are used to train a model bF of RTD by solving max likelihood

I from bF a uniform strategy is derived by solving:

min
T

T −
∫T
0

F (τ)dτ

F (T )

I test performance on the remaining instances of the class

Note: tradeoff training time vs censor threshold u
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C: Haevy Tails
Extreme Value Statistics

I Extreme value statistics focuses on characteristics related to the tails
of a distribution function.

1. indices describing tail decay
2. extreme quantiles (e.g., minima)

I ‘Classical’ statistical theory: analysis of means.
Central limit theorem: X1, . . . ,Xn i.i.d. with FX

√
n

X̄ − µ√
Var(X )

D−→ N (0, 1), as n →∞
Heavy tailed distributions: mean and/or variance may not be finite!
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Heavy Tails

[Gomes, Selman, Crato, and Kautz, 2000] analyze the mean computational
cost of backtracking algorithms to find a solution on a single instance of
CSP 〈〈〈-///-///1///r〉〉〉

Figure: Mean calculated over an increasing number of runs. Left, erratic
behavior, long tail. Right, the case of data drawn from normal or gamma
distributions.

I The existence of the moments (e.g., mean, variance) is determined by the
tails behavior: long tails imply non existence

I This suggests the use of the median rather than the mean for reporting
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Extreme Value Statistics
Tail theory

I Work with data exceeding a high threshold.
I Conditional distribution of exceedances over threshold τ

1 − Fτ(y) = P(X − τ > y | X > τ) =
P(X > τ+ y)

P(X > τ)

I Theorem of [Fisher and Tippett, 1928]:
the distribution of extremes tends in distribution to a generalized
extreme value distribution (GEV) ⇔ exceedances tend to a
generalized Pareto distribution

Pareto-type distribution function

1 − FX (x ) = x− 1
γ `F (x ), x > 0,

where `F (x ) is a slowly varying function at infinity.

In practice, fit a function Cx− 1
γ to the exceedances:

Yj = Xi − τ, provided Xi > τ, j = 1, . . . ,Nτ.
γ determines the nature of the tail
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Heavy Tails

The estimated values of γ give indications on the tails:

I γ > 1: long tails, hyperbolic decay and mean not finite
(the completion rate decreases with t)

I γ < 1: tails exhibit exponential decay

Graphical check using a log-log plot (or a Pareto qqplot)

I heavy tail distributions approximate linear decay,
I exponentially decreasing tail has faster-than linear decay

Long tails explain the goodness of random restart. Determining the
cutoff time is however not trivial.
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Example on CSP
Heavy Tails

〈〈〈-///-///1///r〉〉〉
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Analysis Scenarios

If the analysis scenario allows we can gain more precise insights by
distribution modelling:

Minimum
Known

Minimum
Unknown

Run
Time

(VTR or gap)
Restart Strategies

Time or idle iterations
as parameters

(see previous part)

Solution
Quality

−− Estimation of Optima

It is good to keep always in mind what case one is considering
I 〈〈〈-///-///1///r〉〉〉
I 〈〈〈-///-///n///1〉〉〉
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Extreme Values Statistics

Extreme values theory

I X1,X2, . . . ,Xn i.i.d. FX

Ascending order statistics X (1)
n ≤ . . . ≤ X (n)

n

I For the minimum X (1)
n it is F

X
(1)
n

= 1 − [1 − F (1)
X ]n but not very

useful in practice as FX unknown

I Theorem of [Fisher and Tippett, 1928]:
“almost always” the normalized extreme tends in distribution to a
generalized extreme value distribution (GEV) as n →∞.

In practice, the distribution of extremes is approximated by a GEV:

F
X

(1)
n

(x ) ∼

{
exp(−1(1 − γ x−µ

σ )−1/γ, 1 − γ x−µ
σ > 0, γ 6= 0

exp(− exp( x−µ
σ )), x ∈ R, γ = 0

Parameters estimated by simulation by repeatedly sampling k values

X1n , . . . ,Xkn , taking the extremes X (1)
kn , and fitting the distribution.

γ determines the type of distribution: Weibull, Fréchet, Gumbel, ...
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Characterization of Quality
On a single instance

Application of distribution modelling and extreme values theory for the
characterization of solution quality.

I In random picking, final quality is the minimum cost of k i.i.d. solutions
generated, that is, Y

(1)
k .

Hence, possible to simulate the distribution of minima by repeating n
times.

I In other stochastic optimizers, steps are dependent, but possible to
simulate independence by taking the minimum over l < k and over k and
repeating for n times

I Studies conducted by [Ovacik et al., 2000; Hüsler et al., 2003].

Possible to estimate the distance from the optimum: If the fitting indicates
the Weibull (finite left tail) as the best then solutions near to the optimum

Note: extreme value theory applies only to asymptotically continuous
functions!
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I Common practice in CS and OR to report results on benchmark
instances in numerical tables.

I Graphics are complementary to tables and are often better suitable
for summarizing data.

I Not a single standard tool for analysis but several tools and several
aspects to look at. Look at every case as a different one.

I For configuration and tuning: racing methodologies make things
easy.
Alternatively: Regression trees, search methods, response surface,
ANOVA

I Modelling can be insightful but limited to problems that can be
solved.
Restart, comparisons, prediction.
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