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Course Overview

v/ Scheduling
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Classification

Complexity issues
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Flow Shop and Job Shop
Resource Constrained Project
Scheduling Model

@ Timetabling
v’ Sport Timetabling
v Reservations and Education
¢ University Timetabling
v Crew Scheduling
v/ Public Transports

@ Vechicle Routing
v/ MIP Approaches
o Construction Heuristics
o Local Search Algorithms
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Pre-processing

@ Arc elimination
e aj + tjj > bj =¥ arc (/, ) cannot exist
o di+d;j > C =»arcs (i,j) and (j, i) cannot exist

@ Time windows reduction
o [aj, bj] <= [max{ao + toi,ai}, min{bni1 — tj ns1, bi}]
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@ Time windows reduction:

o lterate over the following rules until no one applies anymore:

1) Minimal arrival time from predecessors:
a; = max {a;, min {bg, r[ni[gl{a,; + ti,‘_}}}.
i
2) Minimal arrival time to successors:
a; = max {a,;, min {bg, 1&1'151{% — tU}}}.
J
3) Maximal departure time from predecessors:

b; = min {bg, max {ai, rﬁfﬁ({bi + tﬂ}}}.

4) Maximal departure time to successors:

b; = min {bl, max {a;, 1(r£1§§c{bj - tgj}} }
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o Combinatorial relaxation
relax constraints (5) and (6)
reduce to network flow problem

@ Linear relaxation

fractional near-optimal solution has capacity and time windows
constraints inactive

In both cases the bounds are weak
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Dantzig Wolfe Decomposition

The VRPTW has the structure:

min  ckx*

ZAkxk <b

keK
Dkxk < dk Vk e K
xkez vk e K
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Dantzig Wolfe Decomposition

Illustrated with matrix blocks

Original problem Master problem

Linking constraints — Column

Convexity constraints

Block

Extreme point/ray

[illustration by Simon Spoorendonk, DIKU]
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Linking constraint in VRPTW is }°, - >, ;)55 Xik = 1. Vi. The
description of the block D*x* < d* is all the rest:

Z dixj < C (9)
(iJ)eA
ZXOJ = ZX;,nH =1 (10)
Jjev iev
S =Y sy =0 Vhe V (11)
iev jev
wi + tij — My(1 — xi) < w; v(i,j) € A (12)
ai <w; < b; Vie V (13)
x;j € {0,1} (14)

where we omitted the index k because, by the assumption of homogeneous
fleet, all blocks are equal.
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Dantzig Wolfe Decomposition

Qriginal problem Restricted master problem

|
|
Linking constraints — Column :
|
|

Convexity constraints I

Block

e
8
3
E

duals

constraints

Subproblem

[illustration by Simon Spoorendonk, DIKU]
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Master problem
A Set Partitioning Problem

min E Cij QlijpA\p

pEP
S>> apA=1 VieV
PEP (i,j)es+ (i)

Ap = {0,1} VpeP

0 if(i))¢p

where 7 is the set of valid paths and «a, = {1 therwi
otherwise

Subproblem
Elementary Shortest Path Problem with Resource Constraints (ESPPRC)

o arcs modified with duals (possible negative costs), NP-hard

O
. . . . O/C;\C;D’@
o find shortest path without violating resource limits
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Subproblem

min Z ?:UXU (]_5)
(ij)eA

st. Y dxg<C (16)
(ij)eA
ZXOJ' = in,n+1 =1 (17)
jev ieVv
inh_thjzo Vhe V (18)
iev jev
wi + tj — My(1 = x;) < w; v(i,j) € A (19)
ai<w <b Vie V (20)

xij € {0,1} (21)
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Subproblem

Solution approach:

o ESPPRC Solved by dynamic programming. Algorithms maintain labels
at vertices and remove dominated labels. Domination rules are crucial.

@ Relaxing and allowing cycles the SPPRC can be solved in
pseudo-polynomial time.
Negative cycles are however limited by the resource constraints.
Cycle elimination procedures by post-processing

o Further extensions (arising from branching rules on the master):
SPPRC with forbidden paths
SPPRC with (7, j)-antipairing constraints
SPPRC with (1, j)-follower constraint

For details see chp. 2 of [B8]
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Cuts in the original three index problem formulation (before DWD)

Original problem Restricted master problem
________________ |
I
Linking constraints —_— Column :
|
I
1
Cuts e Cuts :
Convexty constraits O _I
_______________ 4
Block :
: duals 5
' 3
a

Subproblem

[illustration by Simon Spoorendonk, DIKU]
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Branching

@ branch on original variables
o >, xiik = 0/1 imposes follower constraints on visits of / and j

o choose a variable with fractional not close to 0 or 1, ie,
max cij(min{ X, 1 — Xk })

@ branch on time windows
split time windows s.t. at least one route becomes infeasible
compute [/7, u] (earliest latest) for the current fractional flow

L= max  {l{} VieV
fract. routes r
Ui = max  {uj} VieV

) fract. routes r o o
if L; > U; » at least two routes have disjoint feasibility intervals
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