DM204 – Spring 2011 Scheduling, Timetabling and Routing

Vehicle Routing Construction Heuristics

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Construction Heuristics

Outline

Construction Heuristics
 Construction Heuristics for CVRP
 Construction Heuristics for VRPTW

Course Overview

- ✓ Scheduling
 - ✓ Classification
 - Complexity issues
 - ✓ Single Machine
 - ✔ Parallel Machine
 - ✓ Flow Shop and Job Shop
 - Resource Constrained Project Scheduling Model

- Timetabling
 - ✓ Sport Timetabling
 - ✓ Reservations and Education
 - ✓ University Timetabling
 - ✓ Crew Scheduling
 - ✓ Public Transports
- Vechicle Routing
 - MIP Approaches
 - Construction Heuristics
 - Local Search Algorithms

Construction Heuristics

Outline

Construction Heuristics
 Construction Heuristics for CVRP
 Construction Heuristics for VRPTW

ı

Construction Heuristics

Outline

Construction Heuristics
 Construction Heuristics for CVRP
 Construction Heuristics for VRPTW

Construction Heuristics for CVRP

- TSP based heuristics
- Saving heuristics (Clarke and Wright)
- Insertion heuristics
- Cluster-first route-second
 - Sweep algorithm
 - Generalized assignment
 - Location based heuristic
 - Petal algorithm
- Route-first cluster-second

Cluster-first route-second seems to perform better than route-first (Note: distinction construction heuristic / iterative improvement is often blurred)

Construction heuristics for TSP

They can be used for route-first cluster-second or for growing multiple tours subject to capacity constraints.

- Heuristics that Grow Fragments
 - Nearest neighborhood heuristics
 - Double-Ended Nearest Neighbor heuristic
 - Multiple Fragment heuristic (aka, greedy heuristic)
- Heuristics that Grow Tours
 - Nearest Addition
 - Farthest Addition
 - Random Addition
 - Clarke-Wright saving heuristic
- Heuristics based on Trees
 - Minimum spanning tree heuristic
 - Christofides' heuristics

- Nearest Insertion
- Farthest Insertion
- Random Insertion

(But recall! Concorde: http://www.tsp.gatech.edu/)

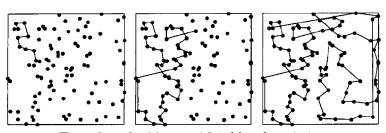


Figure 1. The Nearest Neighbor heuristic.

NN (Flood, 1956)

- 1. Randomly select a starting node
- 2. Add to the last node the closest node until no more node is available
- 3. Connect the last node with the first node

Running time $O(N^2)$

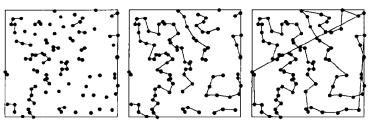


Figure 5. The Multiple Fragment heuristic.

Add the cheapest edge provided it does not create a cycle.

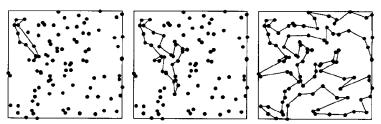


Figure 8. The Nearest Addition heuristic.

NA

- 1. Select a node and its closest node and build a tour of two nodes
- 2. Insert in the tour the closest node v until no more node is available Running time $O(N^3)$



Figure 11. The Farthest Addition heuristic.

FA

- 1. Select a node and its farthest and build a tour of two nodes
- 2. Insert in the tour the farthest node v until no more node is available

FA is more effective than NA because the first few farthest points sketch a broad outline of the tour that is refined after.

Running time $O(N^3)$

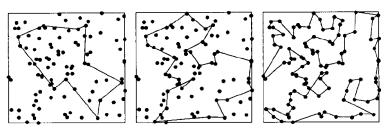


Figure 14. The Random Addition heuristic.

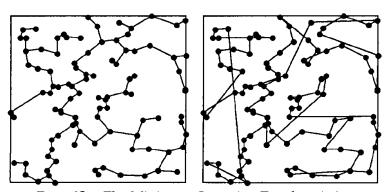


Figure 18. The Minimum Spanning Tree heuristic.

- 1. Find a minimum spanning tree $O(N^2)$
- 2. Append the nodes in the tour in a depth-first, inorder traversal

Running time $O(N^2)$ $A = MST(I)/OPT(I) \le 2$

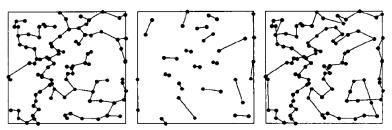


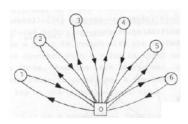
Figure 19. Christofides' heuristic.

- 1. Find the minimum spanning tree T. $O(N^2)$
- 2. Find nodes in T with odd degree and find the cheapest perfect matching M in the complete graph consisting of these nodes only. Let G be the multigraph of all nodes and edges in T and M. $O(N^3)$
- 3. Find an Eulerian walk (each node appears at least once and each edge exactly once) on G and an embedded tour. O(N)

Running time $O(N^3)$

 $A = CH(I)/OPT(I) \le 3/2$

Construction Heuristics Specific for VRP



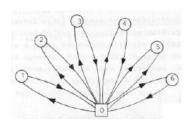
Clarke-Wright Saving Heuristic (1964)

1. Start with an initial allocation of one vehicle to each customer (0 is the depot for VRP or any chosen city for TSP)

Sequential:

- 2. consider in turn route (0, i, ..., j, 0) determine s_{ki} and s_{jl}
- 3. merge with (k,0) or (0,l)

Construction Heuristics Specific for VRP

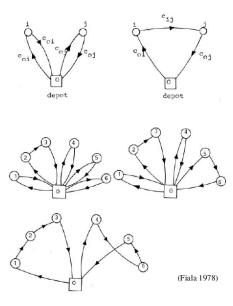


Clarke-Wright Saving Heuristic (1964)

1. Start with an initial allocation of one vehicle to each customer (0 is the depot for VRP or any chosen city for TSP)

Parallel:

- 2. Calculate saving $s_{ij}=c_{0i}+c_{0j}-c_{ij}$ and order the saving in non-increasing order
- scan s_{ij}
 merge routes if i) i and j are not in the same tour ii) neither i and j are
 interior to an existing route iii) vehicle and time capacity are not exceeded



Matching Based Saving Heuristic

- 1. Start with an initial allocation of one vehicle to each customer (0 is the depot for VRP or any chosen city for TSP)
- 2. Compute $s_{pq} = t(S_p) + t(S_q) t(S_p \cup S_q)$ where $t(\cdot)$ is the TSP solution
- 3. Solve a max weighted matching on the S_k with weights s_{pq} on edges. A connection between a route p and q exists only if the merging is feasible.

Insertion Heuristic

$$\alpha(i,k,j) = c_{ik} + c_{kj} - \lambda c_{ij}$$

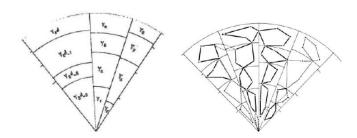
$$\beta(i,k,j) = \mu c_{0k} - \alpha(i,k,j)$$

- 1. construct emerging route (0, k, 0)
- 2. compute for all *k* unrouted the feasible insertion cost:

$$\alpha^*(i_k, k, j_k) = \min_{p} \{\alpha(i_p, k, i_{p+1})\}$$

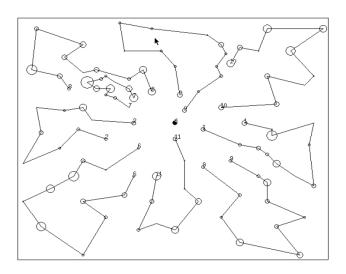
if no feasible insertion go to 1 otherwise choose k^* such that

$$\beta^*(i_k^*, k^*, j_k^*) = \max_{k} \{\beta(i_k, k, j_k)\}$$



Cluster-first route-second: Sweep algorithm [Wren & Holliday (1971)]

- 1. Choose i^* and set $\theta(i^*) = 0$ for the rotating ray
- 2. Compute and rank the polar coordinates (θ, ρ) of each point
- 3. Assign customers to vehicles until capacity not exceeded. If needed start a new route. Repeat until all customers scheduled.



Cluster-first route-second: Generalized-assignment-based algorithm [Fisher & Jaikumur (1981)]

- 1. Choose a j_k at random for each route k
- 2. For each point compute

$$d_{ik} = \min\{c_{0,i} + c_{i,j_k} + c_{j_k,0}, c_{0j_k} + c_{j_k,i} + c_{i,0}\} - (c_{0,j_k} + c_{j_k,0})$$

3. Solve GAP with d_{ik} , Q and q_i

Cluster-first route-second: Location based heuristic [Bramel & Simchi-Levi (1995)]

- 1. Determine seeds by solving a capacitated location problem (k-median)
- 2. Assign customers to closest seed

(better performance than insertion and saving heuristics)

Cluster-first route-second: Petal Algorithm

- 1. Construct a subset of feasible routes
- 2. Solve a set partitioning problem

Route-first cluster-second [Beasley, 1983]

- 1. Construct a TSP tour over all customers
- 2. Choose an arbitrary orientation of the TSP; partition the tour according to capacity constraint; repeat for several orientations and select the best Alternatively, solve a shortest path in an acyclic digraph with costs on arcs: $d_{ij} = c_{0i} + c_{0j} + l_{ij}$ where l_{ij} is the cost of traveling from i to j in the TSP tour.

(not very competitive)

Construction Heuristics

Exercise

Which heuristics can be used to minimize K and which ones need to have K fixed a priori?

Construction Heuristics for VRPTW

Extensions of those for CVRP [Solomon (1987)]

- Saving heuristics (Clarke and Wright)
- Time-oriented nearest neighbors
- Insertion heuristics
- Time-oriented sweep heuristic

Time-Oriented Nearest-Neighbor

- Add the unrouted node "closest" to the depot or the last node added without violating feasibility
- Metric for "closest":

$$c_{ij} = \delta_1 d_{ij} + \delta_2 T_{ij} + \delta_3 v_{ij}$$

 d_{ij} geographical distance T_{ij} time distance v_{ij} urgency to serve j

Insertion Heuristics

Step 1: Compute for each unrouted costumer *u* the *best feasible position* in the route:

$$c_1(i(u), u, j(u)) = \min_{p=1,...,m} \{c_1(i_{p-1}, u, i_p)\}$$

(c_1 is a composition of increased time and increase route length due to the insertion of u)

(see next slide for efficiency issues)

Step 2: Compute for each unrouted customer u which can be feasibly inserted:

$$c_2(i(u^*), u^*, j(u^*)) = \max_{u} \{\lambda d_{0u} - c_1(i(u), u, j(u))\}$$

(max the benefit of servicing a node on a partial route rather than on a direct route)

Step 3: Insert the customer u^* from Step 2

- Let's assume waiting is allowed and s_i indicates service times
- $[e_i, l_i]$ time window, w_i waiting time
- $b_i = \max\{e_i, b_j + s_j + t_{ji}\}$ begin of service
- insertion of u: $(i_0, i_1, \ldots, i_p, \mathbf{u}, i_{p+1}, \ldots, i_m)$
- $\bullet \ \textit{PF}_{i_{\boldsymbol{p}+\boldsymbol{1}}} = b_{i_{\boldsymbol{p}+\boldsymbol{1}}}^{\textit{new}} b_{i_{\boldsymbol{p}+\boldsymbol{1}}} \geq 0 \quad \text{ push forward}$
- $\bullet \ PF_{i_{r+1}} = \max\{0, PF_{i_r} w_{i_{r+1}}\}, \qquad p \leq r \leq m-1$

Theorem

The insertion is feasible if and only if:

$$b_u \leq l_u$$
 and $PF_{i_r} + b_{i_r} \leq l_{i_r}$ $\forall p < r \leq m$

Check vertices k, u < k < m sequentially.

- if $b_k + PF_k > l_k$ then stop: the insertion is infeasible
- if $PF_k = 0$ then stop: the insertion is feasible