
DM204 – Spring 2011

Scheduling, Timetabling and Routing

Lecture 14
Vehicle Routing

Local Search based Metaheuristics

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark



Improvement Heuristics
Metaheuristics
CP for VRPOutline

1. Improvement Heuristics

2. Metaheuristics

3. Constraint Programming for VRP

2



Improvement Heuristics
Metaheuristics
CP for VRPCourse Overview

4 Scheduling
4 Classification
4 Complexity issues
4 Single Machine
4 Parallel Machine
4 Flow Shop and Job Shop
4 Resource Constrained Project

Scheduling Model

Timetabling
4 Sport Timetabling
4 Reservations and Education
4 University Timetabling
4 Crew Scheduling
4 Public Transports

Vechicle Routing
4 MIP Approaches

Construction Heuristics
Local Search Algorithms

3



Improvement Heuristics
Metaheuristics
CP for VRPOutline

1. Improvement Heuristics

2. Metaheuristics

3. Constraint Programming for VRP

4



Improvement Heuristics
Metaheuristics
CP for VRPOutline

1. Improvement Heuristics

2. Metaheuristics

3. Constraint Programming for VRP

5



Improvement Heuristics
Metaheuristics
CP for VRPLocal Search for CVRP and VRPTW

Neighborhood structures:

Intra-route: 2-opt, 3-opt, Lin-Kernighan (not very well suited), Or-opt
(2H-opt)

Inter-routes: λ-interchange, relocate, exchange, cross, 2-opt∗, b-cyclic
k-transfer (ejection chains), GENI

Solution representation and data structures
They depend on the neighborhood.
It can be advantageous to change them from one stage to another of the
heuristic

6



Improvement Heuristics
Metaheuristics
CP for VRPLocal Search for CVRP and VRPTW

Neighborhood structures:

Intra-route: 2-opt, 3-opt, Lin-Kernighan (not very well suited), Or-opt
(2H-opt)

Inter-routes: λ-interchange, relocate, exchange, cross, 2-opt∗, b-cyclic
k-transfer (ejection chains), GENI

Solution representation and data structures
They depend on the neighborhood.
It can be advantageous to change them from one stage to another of the
heuristic

6



Improvement Heuristics
Metaheuristics
CP for VRPIntra-route Neighborhoods

2-opt

{i , i + 1}{j , j + 1} −→ {i , j}{i + 1, j + 1}

i i+1

jj+1

i i+1

jj+1

O(n2) possible exchanges
One path is reversed

7



Improvement Heuristics
Metaheuristics
CP for VRPIntra-route Neighborhoods

3-opt

{i , i + 1}{j , j + 1}{k, k + 1} −→ . . .

i i+1

kk+1

j

j+1

i i+1

kk+1

j

j+1

i i+1

kk+1

j

j+1

O(n3) possible exchanges
Paths can be reversed

8



Improvement Heuristics
Metaheuristics
CP for VRPIntra-route Neighborhoods

Or-opt [Or (1976)]
{i1 − 1, i1}{i2, i2 + 1}{j , j + 1} −→ {i1 − 1, i2 + 1}{j , i1}{i2, j + 1}

jj+1

i −11 i +1

i 21

2

i 

jj+1

i −11 i +1

i 21

2

i 

sequences of one, two, three consecutive vertices relocated
O(n2) possible exchanges — No paths reversed

9



Improvement Heuristics
Metaheuristics
CP for VRPInter-route Neighborhoods

[Savelsbergh, ORSA (1992)]

10



Improvement Heuristics
Metaheuristics
CP for VRPInter-route Neighborhoods

[Savelsbergh, ORSA (1992)]

11



Improvement Heuristics
Metaheuristics
CP for VRPInter-route Neighborhoods

[Savelsbergh, ORSA (1992)]

12



Inter-route Neighborhoods

GENI: generalized insertion [Gendreau, Hertz, Laporte, Oper. Res. (1992)]

select the insertion restricted to the neighborhood of the vertex to be
added (not necessarily between consecutive vertices)
perform the best 3- or 4-opt restricted to reconnecting arc links that are
close to one another.



Inter-route Neighborhoods

GENI: generalized insertion [Gendreau, Hertz, Laporte, Oper. Res. (1992)]

select the insertion restricted to the neighborhood of the vertex to be
added (not necessarily between consecutive vertices)
perform the best 3- or 4-opt restricted to reconnecting arc links that are
close to one another.



Improvement Heuristics
Metaheuristics
CP for VRPEfficient Implementation

Intra-route

Time windows: Feasibility check

In TSP verifying k-optimality requires O(nk) time
In TSPTW feasibility has to be tested then O(nk+1) time

(Savelsbergh 1985) shows how to verify constraints in constant time
Search strategy + Global variables

⇓

O(nk) for k-optimality in TSPTW

14



Improvement Heuristics
Metaheuristics
CP for VRPEfficient Implementation

Intra-route

Time windows: Feasibility check

In TSP verifying k-optimality requires O(nk) time
In TSPTW feasibility has to be tested then O(nk+1) time

(Savelsbergh 1985) shows how to verify constraints in constant time
Search strategy + Global variables

⇓

O(nk) for k-optimality in TSPTW

14



Improvement Heuristics
Metaheuristics
CP for VRP

Search Strategy

Lexicographic search, for 2-exchange:
i = 1, 2, . . . , n − 2 (outer loop)
j = i + 2, i + 3, . . . , n (inner loop)

1

2

3

4

5

{1,2}{3,4}−>{1,3}{2,4}1

2

3

4

5

{1,2}{4,5}−>{1,4}{2,5}1

2

3

4

5

Previous path is expanded by the edge {j − 1, j}

15



Improvement Heuristics
Metaheuristics
CP for VRP

Global variables (auxiliary data structure)

Maintain auxiliary data such that it is possible to:

handle single move in constant time

update their values in constant time

Ex.: in case of time windows:

total travel time of a path

earliest departure time of a path

latest arrival time of a path

16



Improvement Heuristics
Metaheuristics
CP for VRP

Global variables (auxiliary data structure)

Maintain auxiliary data such that it is possible to:

handle single move in constant time

update their values in constant time

Ex.: in case of time windows:

total travel time of a path

earliest departure time of a path

latest arrival time of a path

16



Improvement Heuristics
Metaheuristics
CP for VRPEfficient Local Search

[Irnich (2008)] uniform model

17



Improvement Heuristics
Metaheuristics
CP for VRPOutline

1. Improvement Heuristics

2. Metaheuristics

3. Constraint Programming for VRP

18



Improvement Heuristics
Metaheuristics
CP for VRPMetaheuristics

Many and fancy examples, but first thing to try:

Variable Neighborhood Search + Iterated greedy

19



Improvement Heuristics
Metaheuristics
CP for VRP

Basic Variable Neighborhood Descent (BVND)

Procedure VND
input : Nk , k = 1, 2, . . . , kmax , and an initial solution s
output: a local optimum s for Nk , k = 1, 2, . . . , kmax
k ← 1
repeat

s ′ ← FindBestNeighbor(s,Nk)
if g(s ′) < g(s) then

s ← s ′

k ← 1
else

k ← k + 1
until k = kmax ;

20



Improvement Heuristics
Metaheuristics
CP for VRP

Variable Neighborhood Descent (VND)

Procedure VND
input : Nk , k = 1, 2, . . . , kmax , and an initial solution s
output: a local optimum s for Nk , k = 1, 2, . . . , kmax
k ← 1
repeat

s ′ ← IterativeImprovement(s,Nk)
if g(s ′) < g(s) then

s ← s ′

k ← 1
else

k ← k + 1
until k = kmax ;

21



Improvement Heuristics
Metaheuristics
CP for VRP

Final solution is locally optimal w.r.t. all neighborhoods

First improvement may be applied instead of best improvement

Typically, order neighborhoods from smallest to largest

If iterative improvement algorithms IIk , k = 1, . . . , kmax
are available as black-box procedures:

order black-boxes
apply them in the given order
possibly iterate starting from the first one
order chosen by: solution quality and speed

22



General recommendation: use a combination of 2-opt∗ + or-opt
[Potvin, Rousseau, (1995)]

However,

Designing a local search algorithm is an engineering process in which
learnings from other courses in CS might become important.

It is important to make such algorithms as much efficient as possible.

Many choices are to be taken (search strategy, order, auxiliary data
structures, etc.) and they may interact with instance features. Often a
trade-off between examination cost and solution quality must be decided.

The assessment is conducted through:

analytical analysis (computational complexity)
experimental analysis



General recommendation: use a combination of 2-opt∗ + or-opt
[Potvin, Rousseau, (1995)]

However,

Designing a local search algorithm is an engineering process in which
learnings from other courses in CS might become important.

It is important to make such algorithms as much efficient as possible.

Many choices are to be taken (search strategy, order, auxiliary data
structures, etc.) and they may interact with instance features. Often a
trade-off between examination cost and solution quality must be decided.

The assessment is conducted through:

analytical analysis (computational complexity)
experimental analysis



General recommendation: use a combination of 2-opt∗ + or-opt
[Potvin, Rousseau, (1995)]

However,

Designing a local search algorithm is an engineering process in which
learnings from other courses in CS might become important.

It is important to make such algorithms as much efficient as possible.

Many choices are to be taken (search strategy, order, auxiliary data
structures, etc.) and they may interact with instance features. Often a
trade-off between examination cost and solution quality must be decided.

The assessment is conducted through:

analytical analysis (computational complexity)
experimental analysis



General recommendation: use a combination of 2-opt∗ + or-opt
[Potvin, Rousseau, (1995)]

However,

Designing a local search algorithm is an engineering process in which
learnings from other courses in CS might become important.

It is important to make such algorithms as much efficient as possible.

Many choices are to be taken (search strategy, order, auxiliary data
structures, etc.) and they may interact with instance features. Often a
trade-off between examination cost and solution quality must be decided.

The assessment is conducted through:

analytical analysis (computational complexity)
experimental analysis



General recommendation: use a combination of 2-opt∗ + or-opt
[Potvin, Rousseau, (1995)]

However,

Designing a local search algorithm is an engineering process in which
learnings from other courses in CS might become important.

It is important to make such algorithms as much efficient as possible.

Many choices are to be taken (search strategy, order, auxiliary data
structures, etc.) and they may interact with instance features. Often a
trade-off between examination cost and solution quality must be decided.

The assessment is conducted through:

analytical analysis (computational complexity)
experimental analysis



General recommendation: use a combination of 2-opt∗ + or-opt
[Potvin, Rousseau, (1995)]

However,

Designing a local search algorithm is an engineering process in which
learnings from other courses in CS might become important.

It is important to make such algorithms as much efficient as possible.

Many choices are to be taken (search strategy, order, auxiliary data
structures, etc.) and they may interact with instance features. Often a
trade-off between examination cost and solution quality must be decided.

The assessment is conducted through:
analytical analysis (computational complexity)

experimental analysis



General recommendation: use a combination of 2-opt∗ + or-opt
[Potvin, Rousseau, (1995)]

However,

Designing a local search algorithm is an engineering process in which
learnings from other courses in CS might become important.

It is important to make such algorithms as much efficient as possible.

Many choices are to be taken (search strategy, order, auxiliary data
structures, etc.) and they may interact with instance features. Often a
trade-off between examination cost and solution quality must be decided.

The assessment is conducted through:
analytical analysis (computational complexity)
experimental analysis







Improvement Heuristics
Metaheuristics
CP for VRPIterated Greedy

Key idea: use the VRP cosntruction heuristics

alternation of Construction and Deconstruction phases
an acceptance criterion decides whether the search continues from the
new or from the old solution.

Iterated Greedy (IG):
determine initial candidate solution s
while termination criterion is not satisfied do

r := s
greedily destruct part of s
greedily reconstruct the missing part of s
apply subsidiary iterative improvement procedure (eg, VNS)
based on acceptance criterion,

keep s or revert to s := r

25



Improvement Heuristics
Metaheuristics
CP for VRP

In the literature, the overall heuristic idea received different names:

Removal and reinsertion

Ruin and repair

Iterated greedy

Fix and re-optimize

26



Improvement Heuristics
Metaheuristics
CP for VRP

Removal procedures
Remove some related customers
(their re-insertion is likely to change something, if independent would be
reinserted in same place)

Relatedness measure rij

belong to same route
geographical
temporal and load based
cluster removal
history based

27



Improvement Heuristics
Metaheuristics
CP for VRP

Dispersion sub-problem:
choose q customers to remove with minimal rij

min
∑

ij rijxixj∑
j xj = q

xj ∈ {0, 1}

Heuristic stochastic procedure:

select i at random and find j that minimizes rij
Kruskal like, plus some randomization
history based
random

28



Improvement Heuristics
Metaheuristics
CP for VRP

Reinsertion procedures

Greedy (cheapest insertion)

Max regret:

∆f q
i due to insert i into its best position in its qth best route

i = argmax(∆f 2
i −∆f 1

i )

Constraint programming (max 20 costumers)

29



Improvement Heuristics
Metaheuristics
CP for VRP

Advantages of remove-reinsert procedure with many side constraints:

the search space in local search may become disconnected

it is easier to implement feasibility checks

no need of computing delta functions in the objective function

30



Improvement Heuristics
Metaheuristics
CP for VRP

Further ideas

Adaptive removal: start by removing 1 pair and increase after a certain
number of iterations

use of roulette wheel to decide which removal and reinsertion heuristic
to use (π past contribution)

pi =
πi∑
πi

for each heuristic i

SA as accepting criterion after each reconstruction

31



Improvement Heuristics
Metaheuristics
CP for VRPOutline

1. Improvement Heuristics

2. Metaheuristics

3. Constraint Programming for VRP

32



Improvement Heuristics
Metaheuristics
CP for VRPPerformance of exact methods

Current limits of exact methods [Ropke, Pisinger (2007)]:

CVRP: up to 135 customers by branch and cut and price

VRPTW: 50 customers (but 1000 customers can be solved if the
instance has some structure)

CP can handle easily side constraints but hardly solve VRPs with more than
30 customers.

33



Improvement Heuristics
Metaheuristics
CP for VRPLarge Neighborhood Search

Other approach with CP: [Shaw, 1998]

Use an over all local search scheme

Moves change a large portion of the solution

CP system is used in the exploration of such moves.

CP used to check the validity of moves and determine the values of
constrained variables

As a part of checking, constraint propagation takes place. Later,
iterative improvement can take advantage of the reduced domains to
speed up search by performing fast legality checks.

34



Improvement Heuristics
Metaheuristics
CP for VRPLarge Neighborhood Search

Other approach with CP: [Shaw, 1998]

Use an over all local search scheme

Moves change a large portion of the solution

CP system is used in the exploration of such moves.

CP used to check the validity of moves and determine the values of
constrained variables

As a part of checking, constraint propagation takes place. Later,
iterative improvement can take advantage of the reduced domains to
speed up search by performing fast legality checks.

34



Improvement Heuristics
Metaheuristics
CP for VRPLarge Neighborhood Search

Other approach with CP: [Shaw, 1998]

Use an over all local search scheme

Moves change a large portion of the solution

CP system is used in the exploration of such moves.

CP used to check the validity of moves and determine the values of
constrained variables

As a part of checking, constraint propagation takes place. Later,
iterative improvement can take advantage of the reduced domains to
speed up search by performing fast legality checks.

34



Improvement Heuristics
Metaheuristics
CP for VRPLarge Neighborhood Search

Other approach with CP: [Shaw, 1998]

Use an over all local search scheme

Moves change a large portion of the solution

CP system is used in the exploration of such moves.

CP used to check the validity of moves and determine the values of
constrained variables

As a part of checking, constraint propagation takes place. Later,
iterative improvement can take advantage of the reduced domains to
speed up search by performing fast legality checks.

34



Improvement Heuristics
Metaheuristics
CP for VRPLarge Neighborhood Search

Other approach with CP: [Shaw, 1998]

Use an over all local search scheme

Moves change a large portion of the solution

CP system is used in the exploration of such moves.

CP used to check the validity of moves and determine the values of
constrained variables

As a part of checking, constraint propagation takes place. Later,
iterative improvement can take advantage of the reduced domains to
speed up search by performing fast legality checks.

34



Improvement Heuristics
Metaheuristics
CP for VRP

Solution representation:

Handled by local search:
Next pointers: A variable ni for every customer i representing the next
visit performed by the same vehicle

ni ∈ N ∪ S ∪ E

where S =
⋃

Sk and E =
⋃

Ek are additional visits for each vehicle k
marking the start and the end of the route for vehicle k

Handled by the CP system: time and capacity variables.

35



Improvement Heuristics
Metaheuristics
CP for VRP

Insertion
by CP:

constraint propagation rules: time windows, load and bound
considerations

search heuristic most constrained variable + least constrained valued
(for each v find cheapest insertion and choose v with largest such cost)

Complete search: ok for 15 visits (25 for VRPTW) but with heavy tails

Limited discrepancy search

36



Improvement Heuristics
Metaheuristics
CP for VRP

[Shaw, 1998]

37


	Improvement Heuristics
	Metaheuristics
	Constraint Programming for VRP

