DM204, 2011 SCHEDULING, TIMETABLING AND ROUTING

Single Machine Problems Polynomial Cases

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Outline

1. Resource Constrained Project Scheduling Model

2. Dispatching Rules

3. Single Machine Models

Course Overview

- ✓ Scheduling
 - ✓ Classification
 - ✓ Complexity issues
 - RCPSP
 - Single Machine
 - Parallel Machine and Flow Shop Models
 - Job Shop
 - Resource Constrained Project Scheduling Model

- Timetabling
 - Sport Timetabling
 - Reservations and Education
 - University Timetabling
 - Crew Scheduling
 - Public Transports
- Vechicle Routing
 - Capacited Models
 - Time Windows models
 - Rich Models

RCPSP Dispatching Rules Single Machine Models

Outline

1. Resource Constrained Project Scheduling Model

2. Dispatching Rules

3. Single Machine Models

Resource Constrained Project Scheduling Model

Given:

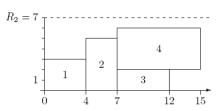
- activities (jobs) $i = 1, \dots, n$
- renewable resources i = 1, ..., m
- amount of resources available R_i
- processing times p_i
- amount of resource used r_{ii}
- precedence constraints $i \rightarrow k$

Further generalizations

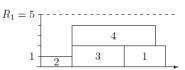
- Time dependent resource profile $R_i(t)$ given by (t_i^{μ}, R_i^{μ}) where $0 = t_i^1 < t_i^2 < ... < t_i^{m_i} = T$ Disjunctive resource, if $R_k(t) = \{0, 1\}$; cumulative resource, otherwise
- Multiple modes for an activity i processing time and use of resource depends on its mode m: p_{im} , r_{ikm} .

An Example

RCPSP Dispatching Rules Single Machine Models



(a) A feasible schedule





(b) An optimal schedule

Modeling

- A contractor has to complete *n* activities.
- The duration of activity j is p_i
- each activity requires a crew of size W_i .
- The activities are not subject to precedence constraints.
- \bullet The contractor has W workers at his disposal
- ullet his objective is to complete all n activities in minimum time.

- Exams in a college may have different duration.
- ullet The exams have to be held in a gym with W seats.
- The enrollment in course j is W_i and
- all W_j students have to take the exam at the same time.
- The goal is to develop a timetable that schedules all n exams in minimum time.
- Consider both the cases in which each student has to attend a single exam as well as the situation in which a student can attend more than one exam.

- In a basic high-school timetabling problem we are given m classes c_1, \ldots, c_m ,
- h teachers a_1, \ldots, a_h and
- T teaching periods t_1, \ldots, t_T .
- Furthermore, we have lectures $i = l_1, \dots, l_n$.
- Associated with each lecture is a unique teacher and a unique class.
- A teacher a_i may be available only in certain teaching periods.
- The corresponding timetabling problem is to assign the lectures to the teaching periods such that
 - each class has at most one lecture in any time period
 - each teacher has at most one lecture in any time period,
 - each teacher has only to teach in time periods where he is available.

- A set of jobs J_1, \ldots, J_g are to be processed by auditors A_1, \ldots, A_m .
- Job J_l consists of n_l tasks (l = 1, ..., g).
- There are precedence constraints $i_1 \rightarrow i_2$ between tasks i_1, i_2 of the same job.
- Each job J_l has a release time r_l , a due date d_l and a weight w_l .
- Each task must be processed by exactly one auditor. If task i is processed by auditor
 A_k, then its processing time is p_{ik}.
- Auditor A_k is available during disjoint time intervals $[s_k^{\nu}, l_k^{\nu}]$ ($\nu = 1, \dots, m$) with $l_k^{\nu} < s_k^{\nu}$ for $\nu = 1, \dots, m_k 1$.
- Furthermore, the total working time of A_k is bounded from below by H_k^- and from above by H_k^+ with $H_k^- \leq H_k^+$ (k = 1, ..., m).
- We have to find an assignment $\alpha(i)$ for each task $i=1,\ldots,n:=\sum_{l=1}^g n_l$ to an auditor $A_{\alpha(i)}$ such that
 - each task is processed without preemption in a time window of the assigned auditor
 - the total workload of A_k is bounded by H_k^- and H_k^k for k = 1, ..., m.
 - the precedence constraints are satisfied,
 - all tasks of J_l do not start before time r_l , and
 - \bullet the total weighted tardiness $\sum_{l=1}^{g} w_l \, T_l$ is minimized.

Outline

1. Resource Constrained Project Scheduling Mode

2. Dispatching Rules

3. Single Machine Models

Dispatching rules

Distinguish static and dynamic rules.

- Service in random order (SIRO)
- Earliest release date first (ERD=FIFO)
 - tends to min variations in waiting time
- Earliest due date (EDD)
- Minimal slack first (MS)
 - $j^* = \arg\min_{j} \{ \max(d_j p_j t, 0) \}.$
 - tends to min due date objectives (T,L)

- (Weighted) shortest processing time first (WSPT)
 - $j^* = \arg\max_i \{w_i/pj\}.$
 - tends to min $\sum w_j C_j$ and max work in progress and
- Longest processing time first (LPT)
 - balance work load over parallel machines
- Shortest setup time first (SST)
 - tends to min C_{max} and max throughput
- Least flexible job first (LFJ)
 - eligibility constraints

RCPSP Dispatching Rules Single Machine Models

- Critical path (CP)
 - first job in the CP
 - tends to min C_{max}
- Largest number of successors (LNS)
- Shortest queue at the next operation (SQNO)
 - tends to min idleness of machines

Dispatching Rules in Schedulin Sipsatching Rules of Schedulin Sche

	RULE	DATA	OBJECTIVES
Rules Dependent	ERD	r _i	Variance in Throughput Times
on Release Dates	EDD	ď _i	Maximum Lateness
and Due Dates	MS	d_j	Maximum Lateness
	LPT	p_i	Load Balancing over Parallel Machines
Rules Dependent	SPT	p_i	Sum of Completion Times, WIP
on Processing	WSPT	p_j , w_j	Weighted Sum of Completion Times, WIP
Times	CP	p_j , prec	Makespan
	LNS	p_j , prec	Makespan
	SIRO	-	Ease of Implementation
Miscellaneous	SST	sik	Makespan and Throughput
	LFJ	M_i	Makespan and Throughput
	SQNO	-	Machine Idleness

When dispatching rules are optimal?

	RULE	DATA	ENVIRONMENT
1	SIRO	_	_
2	ERD	r_j	$1 \mid r_j \mid \text{Var}(\sum (C_j - r_j)/n)$
3	EDD	d_j	1 L _{max}
4	MS	d_j	1 L _{max}
5	SPT	p_j	$Pm \mid\mid \sum C_i; Fm \mid p_{ij} = p_i \mid \sum C_j$
6	WSPT	w_j, p_j	$Pm \mid \sum w_i C_i$
7	LPT	p_j	$Pm \mid\mid C_{\max}$
8	SPT-LPT	p_i	$Fm \mid block, p_{ij} = p_j \mid C_{max}$
9	CP	$p_i, prec$	$Pm \mid prec \mid C_{max}$
10	LNS	$p_i, prec$	Pm prec C _{max}
11	SST	S_{jk}	$1 \mid s_{jk} \mid C_{\max}$
12	LFJ	M_i	$Pm \mid M_j \mid C_{\max}$
13	LAPT	p_{ij}	02 C _{max}
14	SQ	1 -	$Pm \mid \sum C_i$
15	SQNO	_	$Jm \mid \mid \gamma$

Composite dispatching rules

Why composite rules?

- Example: $1 \mid | \sum w_j T_j$:
 - WSPT, optimal if due dates are zero
 - EDD, optimal if due dates are loose
 - MS, tends to minimize T

➤ The efficacy of the rules depends on instance factors

Instance characterization

- Job attributes: {weight, processing time, due date, release date}
- Machine attributes: {speed, num. of jobs waiting, num. of jobs eligible}
- Possible instance factors:

•
$$1 \mid \mid \sum w_j T_j$$

$$\theta_1 = 1 - \frac{\bar{d}}{C_{max}} \qquad \text{(due date tightness)}$$

$$\theta_2 = \frac{d_{max} - d_{min}}{C_{max}} \qquad \text{(due date range)}$$

•
$$1 \mid s_{jk} \mid \sum w_j T_j$$

$$(\theta_1, \ \theta_2 \ \text{with estimated} \ \hat{C}_{max} = \sum_{j=1}^n p_j + n \bar{s})$$

$$\theta_3 = \frac{\bar{s}}{\bar{p}} \qquad \text{(set up time severity)}$$

• $1 \mid | \sum w_i T_i$, dynamic apparent tardiness cost (ATC)

$$I_j(t) = rac{w_j}{p_j} \exp\left(-rac{ ext{max}(d_j - p_j - t, 0)}{Kar{p}}
ight)$$

• $1 | s_{jk} | \sum w_j T_j$, dynamic apparent tardiness cost with setups (ATCS)

$$I_{j}(t, l) = \frac{w_{j}}{p_{j}} \exp\left(-\frac{\max(d_{j} - p_{j} - t, 0)}{K_{1}\bar{p}}\right) \exp\left(\frac{-s_{jk}}{K_{2}\bar{s}}\right)$$

after job / has finished.

Outline

1. Resource Constrained Project Scheduling Model

2. Dispatching Rules

3. Single Machine Models

Outlook

- $1 \mid \mid \sum w_j C_j$: weighted shortest processing time first is optimal
 - $1 \mid \mid \sum_{i} U_{i}$: Moore's algorithm
- $1 \mid prec \mid L_{max}$: Lawler's algorithm, backward dynamic programming in $O(n^2)$ [Lawler, 1973]
- $1 \mid | \sum h_i(C_i)$: dynamic programming in $O(2^n)$
 - $1 \mid \mid \sum w_i T_i$: local search and dynasearch
- $1 \mid r_j, (prec) \mid L_{max}$: branch and bound
 - $1 \mid s_{jk} \mid C_{max}$: in the special case, Gilmore and Gomory algorithm optimal in $O(n^2)$
 - $1 \mid | \sum w_i T_i :$ column generation approaches

Summary

Single Machine Models:

- C_{max} is sequence independent
- if $r_j = 0$ and h_j is monotone non decreasing in C_j then optimal schedule is nondelay and has no preemption.

$1 \mid \mid \sum w_j C_j$

[Total weighted completion time]

Theorem

The weighted shortest processing time first (WSPT) rule is optimal.

Extensions to $1 \mid prec \mid \sum w_j C_j$

- in the general case strongly NP-hard
- chain precedences: process first chain with highest ρ -factor up to, and included, job with highest ρ -factor.
- polytime algorithm also for tree and sp-graph precedences

RCPSP Dispatching Rules Single Machine Models

Extensions to $1 | r_j, prmp | \sum w_j C_j$

- in the general case strongly NP-hard
- preemptive version of the WSPT if equal weights
- however, $1 \mid r_i \mid \sum w_i C_i$ is strongly NP-hard

$1 \mid \mid \sum_{j} U_{j}$

[Number of tardy jobs]

- [Moore, 1968] algorithm in $O(n \log n)$
 - Add jobs in increasing order of due dates
 - If inclusion of job j^* results in this job being completed late discard the scheduled job k^* with the longest processing time
- $1 \mid | \sum_{j} w_{j} U_{j}$ is a knapsack problem hence NP-hard

Dynamic programming

Procedure based on divide and conquer

Principle of optimality the completion of an optimal sequence of decisions must be optimal

- Break down the problem into stages at which the decisions take place
- Find a recurrence relation that takes us backward (forward) from one stage to the previous (next)
- Typical technique: labelling with dominance criteria

(In scheduling, backward procedure feasible only if the makespan is schedule independent, eg, single machine problems without setups, multiple machines problems with identical processing times.)

$1 | prec | h_{max}$

- $h_{max} = \max\{h_1(C_1), h_2(C_2), \dots, h_n(C_n)\}, h_j \text{ regular}$
- special case: $1 \mid prec \mid L_{max}$ [maximum lateness]
- solved by backward dynamic programming in $O(n^2)$ [Lawler, 1978]

J set of jobs already scheduled;

 J^c set of jobs still to schedule;

 $J' \subseteq J^c$ set of schedulable jobs

- Step 1: Set $J=\emptyset$, $J^c=\{1,\ldots,n\}$ and J' the set of all jobs with no successor
- Step 2: Select j^* such that $j^* = \arg\min_{j \in J'} \{h_j \left(\sum_{k \in J^c} p_k \right) \}$; add j^* to J; remove j^* from J^c ; update J'.
- Step 3: If J^c is empty then stop, otherwise go to Step 2.
- For $1 \mid L_{max}$ Earliest Due Date first
- $1|r_i|L_{max}$ is instead strongly NP-hard