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Resource Constrained Project Scheduling Model

Given:
activities (jobs) j = 1, . . . , n

renewable resources i = 1, . . . ,m

amount of resources available Ri

processing times pj

amount of resource used rij
precedence constraints j → k

Further generalizations

Time dependent resource profile Ri (t)
given by (tµi ,R

µ
i ) where 0 = t1i < t2i < . . . < tmi

i = T
Disjunctive resource, if Rk(t) = {0, 1}; cumulative resource, otherwise

Multiple modes for an activity j
processing time and use of resource depends on its mode m: pjm, rjkm.
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Assignment 1

A contractor has to complete n activities.

The duration of activity j is pj

each activity requires a crew of size Wj .

The activities are not subject to precedence constraints.

The contractor has W workers at his disposal

his objective is to complete all n activities in minimum time.
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Assignment 2

Exams in a college may have different duration.

The exams have to be held in a gym with W seats.

The enrollment in course j is Wj and

all Wj students have to take the exam at the same time.

The goal is to develop a timetable that schedules all n exams in
minimum time.

Consider both the cases in which each student has to attend a single
exam as well as the situation in which a student can attend more than
one exam.
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Assignment 3

In a basic high-school timetabling problem we are given m classes
c1, . . . , cm,

h teachers a1, . . . , ah and

T teaching periods t1, . . . , tT .

Furthermore, we have lectures i = l1, . . . , ln.

Associated with each lecture is a unique teacher and a unique class.

A teacher aj may be available only in certain teaching periods.

The corresponding timetabling problem is to assign the lectures to the
teaching periods such that

each class has at most one lecture in any time period
each teacher has at most one lecture in any time period,
each teacher has only to teach in time periods where he is available.
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Assignment 4
A set of jobs J1, . . . , Jg are to be processed by auditors A1, . . . ,Am.

Job Jl consists of nl tasks (l = 1, . . . , g).

There are precedence constraints i1 → i2 between tasks i1, i2 of the same job.

Each job Jl has a release time rl , a due date dl and a weight wl .

Each task must be processed by exactly one auditor. If task i is processed by auditor
Ak , then its processing time is pik .

Auditor Ak is available during disjoint time intervals [sνk , l
ν
k ] ( ν = 1, . . . ,m) with

lνk < sνk for ν = 1, . . . ,mk − 1.

Furthermore, the total working time of Ak is bounded from below by H−
k and from

above by H+
k with H−

k ≤ H+
k (k = 1, . . . ,m).

We have to find an assignment α(i) for each task i = 1, . . . , n :=
∑g

l=1 nl to an
auditor Aα(i) such that

each task is processed without preemption in a time window of the assigned
auditor
the total workload of Ak is bounded by H−

k and Hk
k for k = 1, . . . ,m.

the precedence constraints are satisfied,
all tasks of Jl do not start before time rl , and
the total weighted tardiness

∑g
l=1 wlTl is minimized.
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Distinguish static and dynamic rules.

Service in random order (SIRO)

Earliest release date first (ERD=FIFO)
tends to min variations in waiting time

Earliest due date (EDD)

Minimal slack first (MS)
j∗ = argminj{max(dj − pj − t, 0)}.
tends to min due date objectives (T,L)
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(Weighted) shortest processing time first (WSPT)
j∗ = argmaxj{wj/pj}.
tends to min

∑
wjCj and max work in progress and

Longest processing time first (LPT)
balance work load over parallel machines

Shortest setup time first (SST)
tends to min Cmax and max throughput

Least flexible job first (LFJ)
eligibility constraints

.::. 13



RCPSP
Dispatching Rules
Single Machine Models

Critical path (CP)
first job in the CP

tends to min Cmax

Largest number of successors (LNS)

Shortest queue at the next operation (SQNO)
tends to min idleness of machines
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RULE DATA OBJECTIVES
Rules Dependent ERD rj Variance in Throughput Times
on Release Dates EDD dj Maximum Lateness
and Due Dates MS dj Maximum Lateness

LPT pj Load Balancing over Parallel Machines
Rules Dependent SPT pj Sum of Completion Times, WIP
on Processing WSPT pj , wj Weighted Sum of Completion Times, WIP
Times CP pj , prec Makespan

LNS pj , prec Makespan
SIRO - Ease of Implementation

Miscellaneous SST sjk Makespan and Throughput
LFJ Mj Makespan and Throughput
SQNO - Machine Idleness
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When dispatching rules are optimal?
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Why composite rules?

Example: 1 | |
∑

wjTj :

WSPT, optimal if due dates are zero

EDD, optimal if due dates are loose

MS, tends to minimize T

ä The efficacy of the rules depends on instance factors
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Instance characterization
Job attributes: {weight, processing time, due date, release date}

Machine attributes: {speed, num. of jobs waiting, num. of jobs eligible}

Possible instance factors:

1 | |
∑

wjTj

θ1 = 1− d̄
Cmax

(due date tightness)

θ2 =
dmax − dmin

Cmax
(due date range)

1 | sjk |
∑

wjTj

(θ1, θ2 with estimated Ĉmax =
n∑

j=1

pj + ns̄)

θ3 =
s̄
p̄

(set up time severity)
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1 | |
∑

wjTj , dynamic apparent tardiness cost (ATC)

Ij(t) =
wj

pj
exp

(
−max(dj − pj − t, 0)

Kp̄

)

1 | sjk |
∑

wjTj , dynamic apparent tardiness cost with setups (ATCS)

Ij(t, l) =
wj

pj
exp

(
−max(dj − pj − t, 0)

K1p̄

)
exp

(
−sjk
K2s̄

)
after job l has finished.
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1 | |
∑

wjCj : weighted shortest processing time first is optimal

1 | |
∑

j Uj : Moore’s algorithm

1 | prec | Lmax : Lawler’s algorithm, backward dynamic programming in
O(n2) [Lawler, 1973]

1 | |
∑

hj(Cj) : dynamic programming in O(2n)

1 | |
∑

wjTj : local search and dynasearch

1 | rj , (prec) | Lmax : branch and bound

1 | sjk | Cmax : in the special case, Gilmore and Gomory algorithm
optimal in O(n2)

1 | |
∑

wjTj : column generation approaches
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Single Machine Models:

Cmax is sequence independent

if rj = 0 and hj is monotone non decreasing in Cj then optimal schedule
is nondelay and has no preemption.
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∑∑∑
w jC j

[Total weighted completion time]

Theorem

The weighted shortest processing time first (WSPT) rule is optimal.

Extensions to 1 | prec |
∑

wjCj

in the general case strongly NP-hard

chain precedences:
process first chain with highest ρ-factor up to, and included, job with
highest ρ-factor.

polytime algorithm also for tree and sp-graph precedences
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Extensions to 1 | rj , prmp |
∑

wjCj

in the general case strongly NP-hard

preemptive version of the WSPT if equal weights

however, 1 | rj |
∑

wjCj is strongly NP-hard
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∑∑∑
j U j

[Number of tardy jobs]

[Moore, 1968] algorithm in O(n log n)

Add jobs in increasing order of due dates

If inclusion of job j∗ results in this job being completed late
discard the scheduled job k∗ with the longest processing time

1 | |
∑

j wjUj is a knapsack problem hence NP-hard
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Procedure based on divide and conquer

Principle of optimality the completion of an optimal sequence of decisions
must be optimal

Break down the problem into stages at which the decisions take place
Find a recurrence relation that takes us backward (forward) from one
stage to the previous (next)
Typical technique: labelling with dominance criteria

(In scheduling, backward procedure feasible only if the makespan is schedule
independent, eg, single machine problems without setups, multiple machines
problems with identical processing times.)
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hmax = max{h1(C1), h2(C2), . . . , hn(Cn)}, hj regular

special case: 1 | prec | Lmax [maximum lateness]

solved by backward dynamic programming in O(n2) [Lawler, 1978]

J set of jobs already scheduled;
Jc set of jobs still to schedule;
J ′ ⊆ Jc set of schedulable jobs

Step 1: Set J = ∅, Jc = {1, . . . , n} and J ′ the set of all jobs with no
successor

Step 2: Select j∗ such that j∗ = argminj∈J′{hj
(∑

k∈Jc pk
)
};

add j∗ to J; remove j∗ from Jc ; update J ′.
Step 3: If Jc is empty then stop, otherwise go to Step 2.

For 1 | | Lmax Earliest Due Date first

1|rj |Lmax is instead strongly NP-hard
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