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1 | |
∑

wjCj : weighted shortest processing time first is optimal

1 | |
∑

j Uj : Moore’s algorithm

1 | prec | Lmax : Lawler’s algorithm, backward dynamic programming in
O(n2) [Lawler, 1973]

1 | |
∑

hj(Cj) : dynamic programming in O(2n)

1 | rj , (prec) | Lmax : branch and bound

1 | |
∑

wjTj : local search and dynasearch

1 | |
∑

wjTj : IP formulations, column generation approaches

1 | sjk | Cmax : in the special case, Gilmore and Gomory algorithm
optimal in O(n2)

Multicriteria
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Dynamic Programming
Local Search1 | rj | Lmax1 | rj | Lmax1 | rj | Lmax

[Maximum lateness with release dates]

Strongly NP-hard (reduction from 3-partition)

might have optimal schedule which is not non-delay

Branch and bound algorithm (valid also for 1 | rj , prec | Lmax)
Branching:
schedule from the beginning (level k, n!/(k − 1)! nodes)
elimination criterion: do not consider job jk if:

rj > min
l∈J
{max (t, rl ) + pl} J jobs to schedule, t current time

Lower bounding: relaxation to preemptive case for which EDD is optimal
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Branch and Bound
S root of the branching tree

1 LIST := {S};
2 U:=value of some heuristic solution;
3 current_best := heuristic solution;
4 while LIST 6= ∅
5 Choose a branching node k from LIST;
6 Remove k from LIST;
7 Generate children child(i), i = 1, . . . , nk , and calculate corresponding lower

bounds LBi ;
8 for i :=1 to nk

9 if LBi < U then
10 if child(i) consists of a single solution then
11 U:=LBi ;
12 current_best:=solution corresponding to child(i)
13 else add child(i) to LIST
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Branch and bound vs backtracking

= a state space tree is used to solve a problem.

6= branch and bound does not limit us to any particular way of traversing
the tree (backtracking is depth-first)

6= branch and bound is used only for optimization problems.

Branch and bound vs A∗

= In A∗ the admissible heuristic mimics bounding

6= In A∗ there is no branching. It is a search algorithm.

6= A∗ is best first
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[Jens Clausen (1999). Branch and Bound Algorithms
- Principles and Examples.]

Eager Strategy:
1. select a node
2. branch
3. for each subproblem compute bounds and compare with incumbent

solution
4. discard or store nodes together with their bounds

(Bounds are calculated as soon as nodes are available)

Lazy Strategy:
1. select a node
2. compute bound
3. branch
4. store the new nodes together with the bound of the father node

(often used when selection criterion for next node is max depth)
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Components

1. Initial feasible solution (heuristic) – might be crucial!
2. Bounding function
3. Strategy for selecting
4. Branching
5. Fathoming (dominance test)
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Bounding

min
s∈P

g(s) ≤
{

mins∈P f (s)
mins∈S g(s)

}
≤ min

s∈S
f (s)

P: candidate solutions; S ⊆ P feasible solutions

relaxation: mins∈P f (s)

solve (to optimality) in P but with g

Lagrangian relaxation combines the two

should be polytime and strong (trade off)
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Strategy for selecting next subproblem

best first
(combined with eager strategy but also with lazy)

breadth first
(memory problems)

depth first
works on recursive updates (hence good for memory)
but might compute a large part of the tree which is far from optimal

(enhanced by alternating search in lowest and largest bounds combined
with branching on the node with the largest difference in bound between
the children)
(it seems to perform best)

11



Branch and Bound
IP Models
Dynamic Programming
Local Search

Strategy for selecting next subproblem

best first
(combined with eager strategy but also with lazy)

breadth first
(memory problems)

depth first
works on recursive updates (hence good for memory)
but might compute a large part of the tree which is far from optimal
(enhanced by alternating search in lowest and largest bounds combined
with branching on the node with the largest difference in bound between
the children)
(it seems to perform best)

11



Branch and Bound
IP Models
Dynamic Programming
Local Search

Branching

dichotomic

polytomic

Overall guidelines

finding good initial solutions is important

if initial solution is close to optimum then the selection strategy makes
little difference

Parallel B&B: distributed control or a combination are better than
centralized control

parallelization might be used also to compute bounds if few nodes alive

parallelization with static work load distribution is appealing with large
search trees
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∑
wjTj1 | |

∑
wjTj1 | |

∑
wjTj

Branching:
work backward in time

elimination criterion:
if pj ≤ pk and dj ≤ dk and wj ≥ wk then there is an optimal schedule
with j before k

Lower Bounding:
relaxation to preemptive case
transportation problem

min
n∑

j=1

Cmax∑
t=1

cjtxjt

s.t.
Cmax∑
t=1

xjt = pj , ∀j = 1, . . . , n

n∑
j=1

xjt ≤ 1, ∀t = 1, . . . ,Cmax

xjt ≥ 0 ∀j = 1, . . . , n; t = 1, . . . ,Cmax
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[Pan and Shi, 2007]’s lower bounding through time indexed
Stronger but computationally more expensive

min
n∑

j=1

T−1∑
t=1

cjtyjt

s.t.
T−pj∑
t=1

cjt ≤ hj(t + pj)

T−pj∑
t=1

yjt = 1, ∀j = 1, . . . , n

n∑
j=1

t∑
s=t−pj+1

yjt ≤ 1, ∀t = 1, . . . ,Cmax

yjt ≥ 0 ∀j = 1, . . . , n; t = 1, . . . ,Cmax
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Single machine, single criterion problems 1 | | γ1 | | γ1 | | γ:

Cmax P
Tmax P
Lmax P
hmax P∑

Cj P∑
wjCj P∑
U P∑
wjUj weakly NP-hard∑
T weakly NP-hard∑
wjTj strongly NP-hard∑
hj(Cj) strongly NP-hard
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Sequencing variables

1|prec|
∑

wjCj

Sequencing (linear ordering) variables

min
n∑

j=1

n∑
k=1

wjpkxkj +
n∑

j=1

wjpj

s.t. xkj + xjl + xlk ≥ 1 j , k, l = 1, . . . , nj 6= k, k 6= l
xkj + xjk = 1 ∀j , k = 1, . . . , n, j 6= k
xjk ∈ {0, 1} j , k = 1, . . . , n
xjj = 0 ∀j = 1, . . . , n
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Completion time

1|prec|Cmax

Completion time variables ∈ R and job precedences ∈ B for disjunctive
constraints

min
n∑

j=1

wjzj

s.t. zk − zj ≥ pk for j → k ∈ A
zj ≥ pj , for j = 1, . . . , n
zk − zj ≥ pk or zj − zk ≥ pj , for (i , j) ∈ I
zj ∈ R, j = 1, . . . , n
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Time indexed variables

1||
∑

hj (Cj )

Time indexed variables

min
n∑

j=1

T−pj+1∑
t=1

hj(t + pj)xjt

s.t.
T−pj+1∑

t=1

xjt = 1, for all j = 1, . . . , n

n∑
j=1

t∑
s=max{0,t−pj+1}

xjs ≤ 1, for each t = 1, . . . ,T

xjt ∈ {0, 1}, for each j = 1, . . . , n; t = 1, . . . ,T

+ The LR of this formulation gives better bounds than the two preceding
+ Flexible with respect to objective function
− Pseudo-polynomial number of variables
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max cT x

s. t. Ax ≤ b

Dx ≤ d

x ∈ Zn
+

max cT x (IP)

s. t. Ax ≤ b

x ∈ P

polytope P = {x ∈ Zn : Dx ≤ d}

Assuming that P is bounded and has a finite number of points {x s}, s ∈ Q
it can be represented by its extreme points x1, . . . , xk :

x s =
K∑

k=1

λkx
k , with

K∑
k=1

λk = 1, λk ≥ 0

substituting in (IP) leads to DW master problem:

max
∑

k

(cxk)λk (MP)

s. t.
∑

k

(Axk)λk ≤ b

K∑
k=1

λk = 1

λk ≥ 0
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Dantzig-Wolfe decomposition
Reformulation:

min
n∑

j=1

T−pj+1∑
t=1

hj(t + pj)xjt

s.t.
T−pj+1∑

t=1

xjt = 1, for all j = 1, . . . , n

xjt ∈ X for each j = 1, . . . , n; t = 1, . . . ,T − pj + 1

where X =

x ∈ {0, 1} :
n∑

j=1

t∑
s=t−pj+1

xjs ≤ 1, for each t = 1, . . . ,T


x l , l = 1, . . . , L extreme points of X .

X =

 x ∈ {0, 1} : x =
∑L

l=1 λlx l∑L
l=1 λl = 1,

λl ∈ {0, 1}


matrix of X is interval matrix

extreme points are integral

they are pseudo-schedules
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Dantzig-Wolfe decomposition
Substituting X in original model getting master problem

min
n∑

j=1

T−pj+1∑
t=1

hj(t + pj)(
L∑

l=1

λlx l)

π

s.t.
L∑

l=1

T−pj+1∑
t=1

x l
jt

λl = 1, for all j = 1, . . . , n

⇐=
L∑

l=1

nl
jλl = 1

α

L∑
l=1

λl = 1,

λl ∈ {0, 1}

⇐= λl ≥ 0 LP-relaxation

nl
j number of times job j appears in pseudo-schedule l

solve LP-relaxation by column generation on pseudo-schedules x l

reduced cost of λk is c̄k =
n∑

j=1

T−pj+1∑
t=1

(cjt − πj)xk
jt − α
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Delayed Column Generation
Simplex in matrix form

min {cx | Ax = b, x ≥ 0}

In matrix form: [
0 A
−1 c

] [
z
x

]
=

[
b
0

]

B = {1, 2, . . . , p} basic variables
L = {1, 2, . . . , q} non-basis variables (will be set to lower bound = 0)
(B,L) basis structure
xB, xL, cB, cL,
B = [A1,A2, . . . ,Ap], L = [Ap+1,Ap+2, . . . ,Ap+q]

[
B L 0
cB cL 1

]xB
xL
−z

 =

[
b
0

]



Simplex algorithm sets xL = 0 and xB = B−1b
B invertible, hence rows linearly independent

BxB + LxL = b ⇒ xB + B−1LxL = B−1b ⇒
[

xL = 0
xB = B−1b

The objective function is obtained by multiplying and subtracting constraints by
means of multipliers π (the dual variables)

z =

p∑
j=1

[
cj −

p∑
i=1

πiaij

]
+

q∑
j=1

[
cj −

p∑
i=1

πiaij

]
+

p∑
i=1

πibi

Each basic variable has cost null in the objective function

cj −
p∑

i=1

πiaij = 0 =⇒ π = B−1cB

Reduced costs c̄j of non-basic variables:

c̄j = cj −
p∑

i=1

πiaij



Branch and Bound
IP Models
Dynamic Programming
Local SearchPricing problem

Subproblem solved by finding shortest path in a network N with

1, 2, . . . ,T + 1 nodes corresponding to time periods
process arcs, for all j , t, t → t + pj and cost cjt − πj

idle time arcs, for all t, t → t + 1 and cost 0

a path in this network corresponds to a pseudo-schedule in which a job
may be started more than once or not processed.

since network is directed and acyclic, shortest path found in O(nT )

25



Branch and Bound
IP Models
Dynamic Programming
Local SearchPricing problem

Subproblem solved by finding shortest path in a network N with

1, 2, . . . ,T + 1 nodes corresponding to time periods
process arcs, for all j , t, t → t + pj and cost cjt − πj

idle time arcs, for all t, t → t + 1 and cost 0

a path in this network corresponds to a pseudo-schedule in which a job
may be started more than once or not processed.

since network is directed and acyclic, shortest path found in O(nT )

25



Branch and Bound
IP Models
Dynamic Programming
Local SearchFurther Readings

the lower bound on the master problem produced by the LP-relaxation
of the restricted master problem can be tighten by inequalities

J. van den Akker, C. Hurkens and M. Savelsbergh.
Time-Indexed Formulations for Machine Scheduling Problems:
Column Generation. INFORMS Journal On Computing, 2000,
12(2) , 111-124

A. Pessoa, E. Uchoa, M.P. de Aragão and R. Rodrigues. Exact
algorithm over an arc-time-indexed formulation for parallel
machine scheduling problems. 2010, 2, 259-290

proposes another time index formulation that dominates this one.
They can solve consistently instances up to 100 jobs.
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∑
hj(Cj)1 | |

∑
hj(Cj)1 | |

∑
hj(Cj)

A lot of work done on 1 | |
∑

wjTj
[single-machine total weighted tardiness]

1 | |
∑

Tj is hard in ordinary sense, hence admits a pseudo polynomial
algorithm (dynamic programming in O(n4∑ pj))

1 | |
∑

wjTj strongly NP-hard (reduction from 3-partition)
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∑
hj(Cj)1 | |

∑
hj(Cj)1 | |

∑
hj(Cj)

generalization of
∑

wjTj hence strongly NP-hard

(forward) dynamic programming algorithm

J set of jobs already scheduled;

V (J) =
∑

j∈J hj(Cj)

Step 1: Set J = ∅, V (j) = hj(pj), j = 1, . . . , n

Step 2: V (J) = minj∈J
(
V (J − {j}) + hj

(∑
k∈J pk

))
Step 3: If J = {1, 2, . . . , n} then V ({1, 2, . . . , n}) is optimum,

otherwise go to Step 2.
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∑
hj(Cj)1 | |

∑
hj(Cj)1 | |

∑
hj(Cj)

Local search

1. search space (solution representation)
2. initial solution
3. neghborhood function
4. evaluation function
5. step function
6. termination predicte

Efficient implementations

A. Incremental updates

B. Neighborhood pruning
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∑
hj(Cj)1 | |

∑
hj(Cj)1 | |

∑
hj(Cj)

Neighborhood updates and pruning

Interchange neigh.: size
(n
2

)
and O(|i − j |) evaluation each

first-improvement: πj , πk

pπj ≤ pπk for improvements, wjTj +wkTk must decrease because jobs
in πj , . . . , πk can only increase their tardiness.

pπj ≥ pπk possible use of auxiliary data structure to speed up the com-
putation

best-improvement: πj , πk

pπj ≤ pπk for improvements, wjTj + wkTk must decrease at least as
the best interchange found so far because jobs in πj , . . . , πk

can only increase their tardiness.
pπj ≥ pπk possible use of auxiliary data structure to speed up the com-

putation

Swap: size n − 1 and O(1) evaluation each
Insert: size (n − 1)2 and O(|i − j |) evaluation each
But possible to speed up with systematic examination by means of
swaps: an interchange is equivalent to |i − j | swaps hence overall
examination takes O(n2)
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Dynasearch

two interchanges δjk and δlm are independent
if max{j , k} < min{l ,m} or min{l , k} > max{l ,m};

the dynasearch neighborhood is obtained by a series of independent
interchanges;

it has size 2n−1 − 1;

but a best move can be found in O(n3) searched by dynamic
programming;

it yields in average better results than the interchange neighborhood
alone.
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state (k, π)

πk is the partial sequence at state (k, π) that has min
∑

wT

πk is obtained from state (i , π){
appending job π(k) after π(i) i = k − 1
appending job π(k) and interchanging π(i + 1) and π(k) 0 ≤ i < k − 1

F (π0) = 0; F (π1) = wπ(1)
(
pπ(1) − dπ(1)

)+;
F (πk) = min


F (πk−1) + wπ(k)

(
Cπ(k) − dπ(k)

)+
,

min
1≤i<k−1

{F (πi ) + wπ(k)
(
Cπ(i) + pπ(k) − dπ(k)

)+
+

+
∑k−1

j=i+2 wπ(j)
(
Cπ(j) + pπ(k) − pπ(i+1) − dπ(j)

)+
+

+wπ(i+1)
(
Cπ(k) − dπ(i+1)

)+}
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The best choice is computed by recursion in O(n3) and the optimal
series of interchanges for F (πn) is found by backtrack.

Local search with dynasearch neighborhood starts from an initial
sequence, generated by ATC, and at each iteration applies the best
dynasearch move, until no improvement is possible (that is,
F (πt

n) = F (π
(t−1)
n ), for iteration t).

Speedups:
pruning with considerations on pπ(k) and pπ(i+1)

maintainig a string of late, no late jobs

ht largest index s.t. π(t−1)(k) = π(t−2)(k) for k = 1, . . . , ht then
F (π

(t−1)
k ) = F (π

(t−2)
k ) for k = 1, . . . , ht and at iter t no need to consider

i < ht .
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Dynasearch, refinements:

[Grosso et al. 2004] add insertion moves to interchanges.

[Ergun and Orlin 2006] show that dynasearch neighborhood can be
searched in O(n2).
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Performance:
exact solution via branch and bound feasible up to 40 jobs
[Potts and Wassenhove, Oper. Res., 1985]

exact solution via time-indexed integer programming formulation used to
lower bound in branch and bound solves instances of 100 jobs in 4-9
hours [Pan and Shi, Math. Progm., 2007]

dynasearch: results reported for 100 jobs within a 0.005% gap from
optimum in less than 3 seconds [Grosso et al., Oper. Res. Lett., 2004]
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1 | |
∑

wjCj : weighted shortest processing time first is optimal

1 | |
∑

j Uj : Moore’s algorithm

1 | prec | Lmax : Lawler’s algorithm, backward dynamic programming in
O(n2) [Lawler, 1973]

1 | |
∑

hj(Cj) : dynamic programming in O(2n)

1 | |
∑

wjTj : local search and dynasearch

1 | rj , (prec) | Lmax : branch and bound

1 | |
∑

wjTj : column generation approaches

1 | sjk | Cmax : in the special case, Gilmore and Gomory algorithm
optimal in O(n2)

Multiobjective: Multicriteria Optimization

Stochastic scheduling
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Multiobjective scheduling
Resolution process and decision maker intervention:

a priori methods (definition of weights, importance)
goal programming

weighted sum

...

interactive methods

a posteriori methods
Pareto optimality

...
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