DM204 – Spring 2011 Scheduling, Timetabling and Routing

Lecture 5 Flow Shop and Job Shop

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Outline

Flow Shop Job Shop Job Shop Generalizations

1. Flow Shop

Introduction Makespan calculation Johnson's algorithm Construction heuristics Iterated Greedy Efficient Local Search and Tabu Search

2. Job Shop

Modelling Exact Methods Shifting Bottleneck Heuristic Local Search Methods

3. Job Shop Generalizations

Course Overview

Flow Shop Job Shop Job Shop Generalizations

Scheduling

- Classification
- Complexity issues
- ✓ Single Machine
- ✓ Parallel Machine
 - Flow Shop and Job Shop
 - Resource Constrained Project Scheduling Model

- Timetabling
 - Sport Timetabling
 - Reservations and Education
 - University Timetabling
 - Crew Scheduling
 - Public Transports
- Vechicle Routing
 - Capacited Models
 - Time Windows models
 - Rich Models

Outline

Flow Shop Job Shop Job Shop Generalizations

1. Flow Shop

Introduction Makespan calculation Johnson's algorithm Construction heuristics Iterated Greedy Efficient Local Search and Tabu Search

2. Job Shop

Modelling Exact Methods Shifting Bottleneck Heuristic Local Search Methods

3. Job Shop Generalizations

Flow Shop

General Shop Scheduling:

- $J = \{1, \dots, N\}$ set of jobs; $M = \{1, 2, \dots, m\}$ set of machines
- $J_j = \{O_{ij} \mid i = 1, ..., n_j\}$ set of operations for each job
- p_{ij} processing times of operations O_{ij}
- $\mu_{ij} \subseteq M$ machine eligibilities for each operation
- precedence constraints among the operations
- one job processed per machine at a time, one machine processing each job at a time
- C_j completion time of job j
- ➡ Find feasible schedule that minimize some regular function of C_j

Flow Shop Scheduling:

- $\mu_{ij} = i, i = 1, 2, \dots, m$
- precedence constraints: $O_{ij} \rightarrow O_{i+1,j}$, i = 1, 2, ..., n for all jobs

Example

Flow Sho	р
Job Shop	
Job Shop	Generalizations

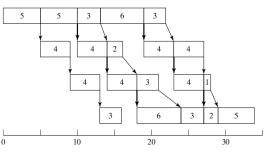
jobs	j_1	j_2	j_3	j_4	j_5
p_{1,j_k}	5	5	3	6	3
p_{2,j_k}	4	4	2	4	4
p_{3,j_k}	4	4	3	4	1
p_{4,j_k}	3	6	3	2	5

schedule representation

 $\pi_1, \pi_2, \pi_3, \pi_4$:

 $\pi_1 : O_{11}, O_{12}, O_{13}, O_{14} \\ \pi_2 : O_{21}, O_{22}, O_{23}, O_{24} \\ \pi_3 : O_{31}, O_{32}, O_{33}, O_{34} \\ \pi_4 : O_{41}, O_{42}, O_{43}, O_{44}$

Gantt chart

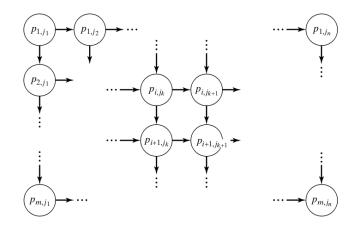


- we assume unlimited buffer
- if same job sequence on each machine ➡ permutation flow shop

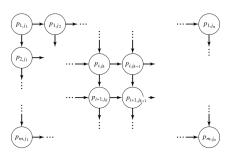
Directed Graph Representation

Flow Shop Job Shop Job Shop Generalizations

Given a sequence: operation-on-node network, jobs on columns, and machines on rows



Directed Graph Representation



Recursion for C_{max}

$$C_{i,\pi(1)} = \sum_{l=1}^{i} p_{l,\pi(1)}$$

$$C_{1,\pi(j)} = \sum_{l=1}^{j} p_{l,\pi(l)}$$

$$C_{i,\pi(j)} = \max\{C_{i-1,\pi(j)}, C_{i,\pi(j-1)}\} + p_{i,\pi(j)}$$

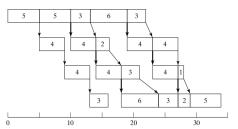
Flow Shop Job Shop Job Shop Generalizations

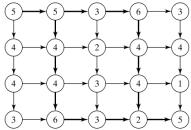
Example

jobs	j_1	j_2	j_3	j_4	j_5
p_{1,j_k}	5	5	3	6	3
p_{2,j_k}	4	4	2	4	4
p_{3,j_k}	4	4	3	4	1
p_{4,j_k}	3	6	3	2	5

$$C_{max} = 34$$

corresponds to longest path





Flow Shop Job Shop Job Shop Generalizations

Fm || C_{max}

Theorem

There always exist an optimum sequence without change in the first two and last two machines.

Proof: By contradiction.

Corollary

 $F2 \mid |C_{max} \text{ and } F3 \mid |C_{max} \text{ are permutation flow shop}$

Note: $F3 \mid C_{max}$ is strongly NP-hard

*F*2 | | *C*_{max}

Intuition: give something short to process to 1 such that 2 becomes operative and give something long to process to 2 such that its buffer has time to fill.

Construct a sequence $T : T(1), \ldots, T(n)$ to process in the same order on both machines by concatenating two sequences: a left sequence $L : L(1), \ldots, L(t)$, and a right sequence $R : R(t+1), \ldots, R(n)$, that is, $T = L \circ R$

[Selmer Johnson, 1954, Naval Research Logistic Quarterly]

Let J be the set of jobs to process Let T, L, $R = \emptyset$ Step 1 Find (i^*, j^*) such that $p_{i^*, j^*} = \min\{p_{ij} \mid i \in 1, 2, j \in J\}$ Step 2 If $i^* = 1$ then $L = L \circ \{i^*\}$ else if $i^* = 2$ then $R = \{i^*\} \circ R$ Step 3 $J := J \setminus \{j^*\}$ Step 4 If $J \neq \emptyset$ go to Step 1 else $T = L \circ R$

Theorem

The sequence $T : T(1), \ldots, T(n)$ is optimal.

Proof

- Assume at one iteration of the algorithm that job *k* has the min processing time on machine 1. Show that in this case job *k* has to go first on machine 1 than any other job selected later.
- By contradiction, show that if in a schedule *S* a job *j* precedes *k* on machine 1 and has larger processing time on 1, then *S* is a worse schedule than *S'*.

There are three cases to consider.

- Iterate the proof for all jobs in *L*.
- Prove symmetrically for all jobs in *R*.

Construction Heuristics (1)

Fm | prmu | C_{max}

Flow Shore Job Shop Job Shop Generalizations

Slope heuristic

• schedule in decreasing order of $A_i = -\sum_{i=1}^{m} (m - (2i - 1))p_{ii}$

Campbell, Dudek and Smith's heuristic (1970)

extension of Johnson's rule to when permutation is not dominant

• recursively create 2 machines 1 and m-1

$$p'_{ij} = \sum_{k=1}^{i} p_{kj} \qquad p''_{ij} = \sum_{k=m-i+1}^{m} p_{kj}$$

and use Johnson's rule

- repeat for all m-1 possible pairings
- return the best for the overall *m* machine problem

Construction Heuristics (2) *Fm* | *prmu* | *C_{max}*

Nawasz, Enscore, Ham's heuristic (1983)

- Step 1: sort in decreasing order of $\sum_{i=1}^{m} p_{ij}$
- Step 2: schedule the first 2 jobs at best
- Step 3: insert all others in best position

Implementation in $O(n^2m)$

[Framinan, Gupta, Leisten (2004)] examined 177 different arrangements of jobs in Step 1 and concluded that the NEH arrangement is the best one for C_{max} .

Iterated Greedy

Iterated Greedy [Ruiz, Stützle, 2007]

Destruction: remove *d* jobs at random

Construction: reinsert them with NEH heuristic in the order of removal

Local Search: insertion neighborhood (first improvement, whole evaluation $O(n^2m)$)

Acceptance Criterion: random walk, best, SA-like

Performance on up to $n = 500 \times m = 20$:

- NEH average gap 3.35% in less than 1 sec.
- IG average gap 0.44% in about 360 sec.

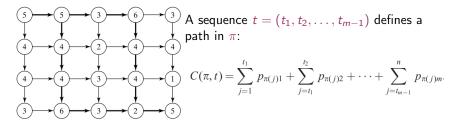
Efficient local search for Fm | prmu | Cmax

Flow Shop Job Shop Job Shop Generalizations

Tabu search (TS) with insert neighborhood.

TS uses best strategy. ➡ need to search efficiently!

Neighborhood pruning [Novicki, Smutnicki, 1994, Grabowski, Wodecki, 2004]

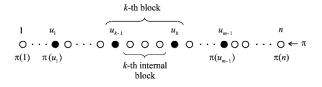


 C_{max} expression through critical path:

$$C_{\max}(\pi) = \max_{1 \le t_1 \le t_2 \le \cdots \le t_{m-1} \le n} \left(\sum_{j=1}^{t_1} p_{\pi(j)1} + \sum_{j=t_1}^{t_2} p_{\pi(j)2} + \cdots + \sum_{j=t_{m-1}}^{n} p_{\pi(j)m} \right)$$

critical path: $\vec{u} = (u_1, u_2, \dots, u_m) : C_{max}(\pi) = C(\pi, u)$

Block B_k and Internal Block B_k^{Int}



Theorem (Werner, 1992)

Let $\pi, \pi' \in \Pi$, if π' has been obtained from π by a job insert so that $C_{\max}(\pi') < C_{\max}(\pi)$ then in π' :

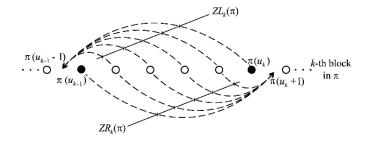
a) at least one job $j \in B_k$ precedes job $\pi(u_{k-1}), k = 1, ..., m$, or

b) at least one job $j \in B_k$ succeeds job $\pi(u_k), k = 1, ..., m$

Corollary (Elimination Criterion)

If π' is obtained by π by an "internal block insertion" then $C_{\max}(\pi') \ge C_{\max}(\pi)$.

Hence we can restrict the search to where the good moves can be:



Further speedup: Use of lower bounds in delta evaluations: Let δ_{x,u_k}^r indicate insertion of x after u_k (move of type $ZR_k(\pi)$)

$$\Delta(\delta_{x,u_{k}}^{r}) = \begin{cases} p_{\pi(x),k+1} - p_{\pi(u_{k}),k+1} & x \neq u_{k-1} \\ p_{\pi(x),k+1} - p_{\pi(u_{k}),k+1} + p_{\pi(u_{k-1}+1),k-1} - p_{\pi(x),k-1} & x = u_{k-1} \end{cases}$$

That is, add and remove from the adjacent blocks It can be shown that:

$$C_{\max}(\delta_{x,u_k}^r(\pi)) \ge C_{\max}(\pi) + \Delta(\delta_{x,u_k}^r)$$

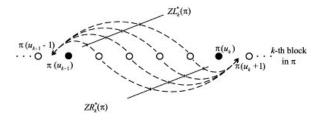
Theorem (Nowicki and Smutnicki, 1996, EJOR) The neighborhood thus defined is connected.

Metaheuristic details:

Prohibition criterion: an insertion δ_{x,u_k} is tabu if it restores the relative order of $\pi(x)$ and $\pi(x+1)$.

Tabu length: $TL = 6 + \left[\frac{n}{10m}\right]$

Perturbation



- perform all *inserts* among all the blocks that have $\Delta < 0$
- activated after MaxIdleIter idle iterations

Tabu Search: the final algorithm:

Initialization : $\pi = \pi_0$, $C^* = C_{max}(\pi)$, set iteration counter to zero.

- Searching : Create UR_k and UL_k (set of non tabu moves)
- Selection : Find the best move according to lower bound Δ . Apply move. Compute true $C_{max}(\delta(\pi))$. If improving compare with C^* and in case update. Else increase number of idle iterations.

Perturbation : Apply perturbation if MaxIdleIter done.

Stop criterion : Exit if MaxIter iterations are done.

Outline

Flow Shop Job Shop Job Shop Generalizations

1. Flow Shop

Introduction Makespan calculation Johnson's algorithm Construction heuristics Iterated Greedy Efficient Local Search and Tabu Searc

2. Job Shop

Modelling Exact Methods Shifting Bottleneck Heuristic Local Search Methods

3. Job Shop Generalizations

Job Shop

General Shop Scheduling:

- $J = \{1, \dots, N\}$ set of jobs; $M = \{1, 2, \dots, m\}$ set of machines
- $J_j = \{O_{ij} \mid i = 1, \dots, n_j\}$ set of operations for each job
- *p_{ij}* processing times of operations *O_{ij}*
- $\mu_{ij} \subseteq M$ machine eligibilities for each operation
- precedence constraints among the operations
- one job processed per machine at a time, one machine processing each job at a time
- C_j completion time of job j
- Find feasible schedule that minimize some regular function of C_j Job shop
 - $\mu_{ij} = l, l = 1, \dots, n_j$ and $\mu_{ij} \neq \mu_{i+1,j}$ (one machine per operation)
 - $O_{1j}
 ightarrow O_{2j}
 ightarrow \ldots
 ightarrow O_{n_j,j}$ precedences (without loss of generality)
 - without repetition and with unlimited buffers

Task:

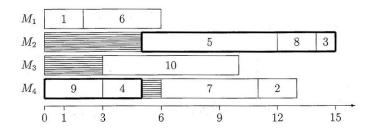
- Find a schedule $S = (S_{ij})$, indicating the starting times of O_{ij} , such that:
 - it is feasible, that is,
 - $S_{ij} + p_{ij} \leq S_{i+1,j}$ for all $O_{ij} \rightarrow O_{i+1,j}$

• $S_{ij} + p_{ij} \leq S_{uv}$ or $S_{uv} + p_{uv} \leq S_{ij}$ for all operations with $\mu_{ij} = \mu_{uv}$. and has minimum makespan: min $\{\max_{j \in J}(S_{n_i,j} + p_{n_i,j})\}$.

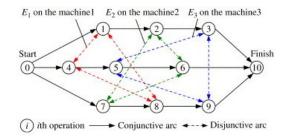
A schedule can also be represented by an *m*-tuple $\pi = (\pi^1, \pi^2, \dots, \pi^m)$ where π^i defines the processing order on machine *i*.

There is always an optimal schedule that is semi-active.

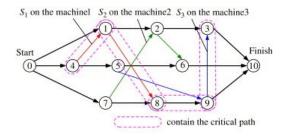
(semi-active schedule: for each machine, start each operation at the earliest feasible time.)



- Often simplified notation: $N = \{1, ..., n\}$ denotes the set of operations
- Disjunctive graph representation: G = (N, A, E)
 - vertices N: operations with two dummy operations 0 and n + 1 denoting "start" and "finish".
 - directed arcs A, conjunctions
 - undirected arcs *E*, disjunctions
 - length of (i, j) in A is p_i



- A complete selection corresponds to choosing one direction for each arc of *E*.
- A complete selection that makes *D* acyclic corresponds to a feasible schedule and is called consistent.
- Complete, consistent selection ⇔ semi-active schedule (feasible earliest start schedule).
- Length of longest path 0-(n+1) in D corresponds to the makespan



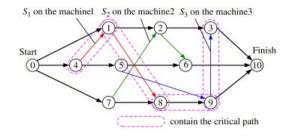
Longest path computation

In an acyclic digraph:

- construct topological ordering $(i < j \text{ for all } i \rightarrow j \in A)$
- recursion:

 $r_0 = 0$ $r_l = \max_{\{j \mid j \to l \in A\}} \{r_j + p_j\} \quad \text{for } l = 1, \dots, n+1$

- A block is a maximal sequence of adjacent critical operations processed on the same machine.
- In the Fig. below: $B_1 = \{4, 1, 8\}$ and $B_2 = \{9, 3\}$



- Any operation, *u*, has two immediate predecessors and successors:
 - its job predecessor JP(u) and successor JS(u)
 - its machine predecessor MP(u) and successor MS(u)

Exact methods

• Disjunctive programming

$$\begin{array}{ll} \min & C_{max} \\ s.t. & x_{ij} + p_{ij} \leq C_{max} \\ & x_{ij} + p_{ij} \leq x_{lj} \\ & x_{ij} + p_{ij} \leq x_{ik} \lor x_{ij} + p_{ij} \leq x_{ik} & \forall (O_{ij}, O_{lj}) \in A \\ & x_{ij} \leq 0 \\ \end{array}$$

- Constraint Programming
- Branch and Bound [Carlier and Pinson, 1983]

Typically unable to schedule optimally more than 10 jobs on 10 machines. Best result is around 250 operations.

Branch and Bound [Carlier and Pinson, 1983] [B1, p. 179]

Let Ω contain the first operation of each job;

Let $r_{ij} = 0$ for all $O_{ij} \in \Omega$

Machine Selection Compute for the current partial schedule

$$t(\Omega) = \min_{ij\in\Omega} \{r_{ij} + p_{ij}\}$$

and let i^* denote the machine on which the minimum is achieved

Branching Let Ω' denote the set of all operations O_{i^*j} on machine i^* such that

 $r_{i*j} < t(\Omega)$ (i.e. eliminate $r_{i*j} \ge t(\Omega)$)

For each operation in Ω' , consider an (extended)partial schedule with that operation as the next one on machine i^* . For each such (extended) partial schedule, delete the operations from Ω , include its immediate follower in Ω and return to Machine Selection.

Flow Shop Job Shop Job Shop Generalizations

Lower Bounding:

- longest path in partially selected disjunctive digraph
- solve $1|r_{ij}|L_{max}$ on each machine *i* like if all other machines could process at the same time (see later shifting bottleneck heuristic) + longest path.

Shifting Bottleneck Heuristic

- A complete selection is made by the union of selections S_k for each clique E_k that corresponds to machines.
- Idea: use a priority rule for ordering the machines. choose each time the bottleneck machine and schedule jobs on that machine.
- Measure bottleneck quality of a machine k by finding optimal schedule to a certain single machine problem.
- Critical machine, if at least one of its arcs is on the critical path.

- $M_0 \subset M$ set of machines already sequenced.
- $k \in M \setminus M_0$
- $P(k, M_0)$ is problem $1 | r_j | L_{max}$ obtained by:
 - the selections in M_0
 - deleting each disjunctive arc in $p \in M \setminus M_0, p \neq k$
- $v(k, M_0)$ is the optimum of $P(k, M_0)$
- bottleneck $m = \arg \max_{k \in M \setminus M_0} \{v(k, M_0)\}$
- $-M_0 = \emptyset$
- Step 1: Identify bottleneck m among $k \in M \setminus M_0$ and sequence it optimally. Set $M_0 \leftarrow M_0 \cup \{m\}$
- Step 2: Reoptimize the sequence of each critical machine $k \in M_0$ in turn: set $M'_o = M_0 \{k\}$ and solve $P(k, M'_0)$. Stop if $M_0 = M$ otherwise Step 1.
 - Local Reoptimization Procedure

Construction of $P(k, M_0)$

- $1 | r_j | L_{max}$:
 - $r_j = L(0, j)$
 - $d_j = L(0, n) L(j, n) + p_j$

L(i,j) length of longest path in G: Computable in O(n)

acyclic complete directed graph \iff transitive closure of its unique directed Hamiltonian path.

Hence, only predecessors and successor are to be checked. The graph is not constructed explicitly, but by maintaining a list of jobs per machines and a list machines per jobs.

 $1 \mid r_j \mid L_{max}$ can be solved optimally very efficiently. Results reported up to 1000 jobs.

$1 \mid r_j \mid L_{max}$

From one of the past lectures

[Maximum lateness with release dates]

- Strongly NP-hard (reduction from 3-partition)
- might have optimal schedule which is not non-delay
- Branch and bound algorithm (valid also for $1 | r_j, prec | L_{max}$)
 - Branching:

schedule from the beginning (level k, n!/(k-1)! nodes) elimination criterion: do not consider job j_k if:

 $r_j > \min_{l \in J} \{\max(t, r_l) + p_l\}$ J jobs to schedule, t current time

• Lower bounding: relaxation to preemptive case for which EDD is optimal

Efficient local search for job shop

Solution representation: *m*-tuple $\pi = (\pi^1, \pi^2, \dots, \pi^m) \iff$ oriented digraph $D_{\pi} = (N, A, E_{\pi})$

Neighborhoods

Change the orientation of certain disjunctive arcs of the current complete selection

Issues:

- 1. Can it be decided easily if the new digraph $D_{\pi'}$ is acyclic?
- 2. Can the neighborhood selection S' improve the makespan?
- 3. Is the neighborhood connected?

Swap Neighborhood[Novicki, Smutnicki]Reverse one oriented disjunctive arc (i, j) on some critical path.

Theorem

All neighbors are consistent selections.

Note: If the neighborhood is empty then there are no disjunctive arcs, nothing can be improved and the schedule is already optimal.

Theorem

The swap neighborhood is weakly optimal connected.

Insertion Neighborhood

[Balas, Vazacopoulos, 1998]

For some nodes u, v in the critical path:

- move *u* right after *v* (forward insert)
- move v right before u (backward insert)

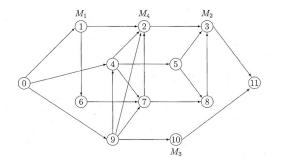
Theorem: If a critical path containing *u* and *v* also contains JS(v) and $L(v, n) \ge L(JS(u), n)$

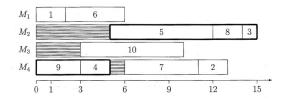
then a forward insert of u after v yields an acyclic complete selection.

Theorem: If a critical path containing u and v also contains JS(v) and

 $L(0, u) + p_u \ge L(0, JP(v)) + p_{JP(v)}$

then a backward insert of v before v yields an acyclic complete selection.





Theorem: (Elimination criterion) If $C_{max}(S') < C_{max}(S)$ then at least one operation of a machine block *B* on the critical path has to be processed before the first or after the last operation of *B*.

- Swap neighborhood can be restricted to first and last operations in the block
- Insert neighborhood can be restricted to moves similar to those saw for the flow shop. [Grabowski, Wodecki]

Tabu Search requires a best improvement strategy hence the neighborhood must be search very fast.

Neighbor evaluation:

- exact recomputation of the makespan O(n)
- approximate evaluation (rather involved procedure but much faster and effective in practice)

The implementation of Tabu Search follows the one saw for flow shop.

Outline

Flow Shop Job Shop Job Shop Generalizations

1. Flow Shop

Introduction Makespan calculation Johnson's algorithm Construction heuristics Iterated Greedy Efficient Local Search and Tabu Search

2. Job Shop

Modelling Exact Methods Shifting Bottleneck Heuristic Local Search Methods

3. Job Shop Generalizations

Generalizations: Time Lags

Generalized time constraints

They can be used to model:

• Release time:

 $S_0 + r_i \leq S_i \qquad \iff \qquad d_{0i} = r_i$

• Deadlines:

$$S_i + p_i - d_i \leq S_0 \qquad \Longleftrightarrow \qquad d_{i0} = p_i - d_i$$

Modelling

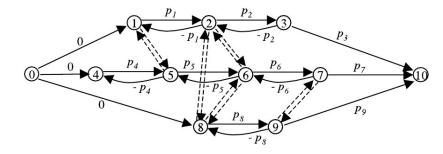
$\begin{array}{ll} \min & C_{max} \\ s.t. & x_{ij} + d_{ij} \leq C_{max} & \forall \ O_{ij} \in N \\ & x_{ij} + d_{ij} \leq x_{lj} & \forall \ (O_{ij}, O_{lj}) \in A \\ & x_{ij} + d_{ij} \leq x_{ik} \lor x_{ij} + d_{ij} \leq x_{ik} & \forall \ (O_{ij}, O_{ik}) \in E \\ & x_{ij} \geq 0 & \forall \ i = 1, \dots, m \ j = 1, \dots, N \end{array}$

• In the disjunctive graph, d_{ij} become the lengths of arcs

• Exact relative timing (perishability constraints): if operation *j* must start *l_{ij}* after operation *i*:

 $S_i + p_i + l_{ij} \leq S_i$ and $S_i - (p_i + l_{ij}) \leq S_i$

 $(I_{ij} = 0$ if no-wait constraint)



• Set up times:

$$S_i + p_i + s_{ij} \leq S_j$$
 or $S_j + p_j + s_{ji} \leq S_i$

- Machine M_k unavailable in $[a_1, b_1]$, $[a_2, b_2]$, ..., $[a_v, b_v]$
- Introduce v artificial operations $\lambda = 1, ..., v$ with $\mu_{\lambda} = M_k$ and: $p_{\lambda} = b_{\lambda} - a_{\lambda}$ $r_{\lambda} = a_{\lambda}$ $d_{\lambda} = b_{\lambda}$
- Minimum lateness objectives:

$$L_{max} = \max_{j=1}^{N} \{C_j - d_j\} \qquad \Longleftrightarrow \qquad d_{n_j, n+1} = p_{n_j} - d_j$$

Blocking

Flow Shop Job Shop Job Shop Generalizations

Arises with limited buffers:

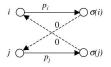
after processing, a job remains on the machine until the next machine is freed

- Needed a generalization of the disjunctive graph model \implies Alternative graph model G = (N, E, A) [Mascis, Pacciarelli, 2002]
- 1. two non-blocking operations to be processed on the same machine

 $S_i + p_i \leq S_j$ or $S_j + p_j \leq S_i$

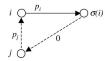
2. Two blocking operations *i*, *j* to be processed on the same machine $\mu(i) = \mu(j)$

$$S_{\sigma(j)} \leq S_i$$
 or $S_{\sigma(i)} \leq S_j$



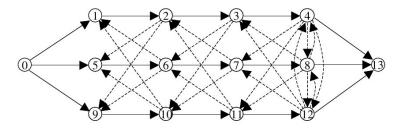
 i is blocking, j is non-blocking (ideal) and i, j to be processed on the same machine μ(i) = μ(j).

$$S_i + p_i \leq S_j$$
 or $S_{\sigma(j)} \leq S_i$

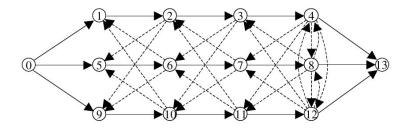


Example

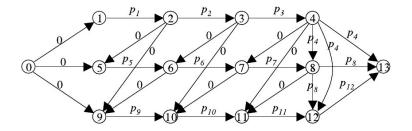
- O_0, O_1, \ldots, O_{13}
- $M(O_1) = M(O_5) = M(O_9)$ $M(O_2) = M(O_6) = M(O_{10})$ $M(O_3) = M(O_7) = M(O_{11})$



- Length of arcs can be negative
- Multiple occurrences possible: $((i, j), (u, v)) \in A$ and $((i, j), (h, k)) \in A$
- The last operation of a job *j* is always non-blocking.



• A complete selection S is consistent if it chooses alternatives from each pair such that the resulting graph does not contain positive cycles.



Example:

- *p*_a = 4
- *p*_b = 2
- $p_c = 1$
- b must start at least 9 days after a has started
- c must start at least 8 days after b is finished
- c must finish within 16 days after a has started

$$\begin{array}{rcl} S_a + 9 &\leq & S_b \\ S_b + 10 &\leq & S_c \\ S_c - 15 &\leq & S_a \end{array}$$

This leads to an absurd.

In the alternative graph the cycle is positive.

- The Makespan still corresponds to the longest path in the graph with the arc selection G(S).
- Problem: now the digraph may contain cycles. Longest path with simple cyclic paths is NP-complete. However, here we have to care only of non-positive cycles.
- If there are no cycles of length strictly positive it can still be computed efficiently in $O(|N||E \cup A|)$ by Bellman-Ford (1958) algorithm.
- The algorithm iteratively considers all edges in a certain order and updates an array of longest path lengths for each vertex. It stops if a loop over all edges does not yield any update or after |N| iterations over all edges (in which case we know there is a positive cycle).
- Possible to maintain incremental updates when changing the selection [Demetrescu, Frangioni, Marchetti-Spaccamela, Nanni, 2000].

- The search space is highly constrained + detecting positive cycles is costly
- Hence local search methods not very successful
- Rely on the construction paradigm
- Rollout algorithm [Meloni, Pacciarelli, Pranzo, 2004]

Rollout

- Master process: grows a partial selection S^k: decides the next element to fix based on an heuristic function (selects the one with minimal value)
- Slave process: evaluates heuristically the alternative choices. Completes the selection by keeping fixed what passed by the master process and fixing one alternative at a time.

- Slave heuristics
 - Avoid Maximum Current Completion time find an arc (h, k) that if selected would increase most the length of the longest path in G(S^k) and select its alternative

 $\max_{(uv)\in A} \{ l(0, u) + a_{uv} + l(v, n) \}$

• Select Most Critical Pair

find the pair that, in the worst case, would increase least the length of the longest path in $G(S^k)$ and select the best alternative

 $\max_{((ij),(hk))\in A} \min\{I(0, u) + a_{hk} + I(k, n), I(0, i) + a_{ij} + I(j, n)\}$

• Select Max Sum Pair

find the pair with greatest potential effect on the length of the longest path in $G(S^k)$ and select the best alternative

 $\max_{((ij),(hk))\in A} |l(0,u) + a_{hk} + l(k,n) + l(0,i) + a_{ij} + l(j,n)|$

Trade off quality *vs* keeping feasibility Results depend on the characteristics of the instance. Implementation details of the slave heuristics

- Once an arc is added we need to update all L(0, u) and L(u, n). Backward and forward visit O(|F| + |A|)
- When adding arc a_{ij}, we detect positive cycles if L(i,j) + a_{ij} > 0. This happens only if we updated L(0, i) or L(j, n) in the previous point and hence it comes for free.
- Overall complexity O(|A|(|F| + |A|))

Speed up of Rollout:

- Stop if partial solution overtakes upper bound
- limit evaluation to say 20% of arcs in A