DM204 - Spring 2011
Scheduling, Timetabling and Routing

Lecture 7
 Timetabling: Reservations and Education

Marco Chiarandini
Department of Mathematics \& Computer Science
University of Southern Denmark

Outline

1. Reservations without slack
2. Reservations with slack
3. Timetabling with one Operator
4. Timetabling with Operators
5. Educational Timetabling

Course Overview

\checkmark Scheduling
\checkmark Classification
\checkmark Complexity issues
\checkmark Single Machine
\checkmark Parallel Machine
\checkmark Flow Shop and Job Shop
\checkmark Resource Constrained Project Scheduling Model

- Timetabling
\checkmark Sport Timetabling
- Reservations and Education
- University Timetabling
- Crew Scheduling
- Public Transports
- Vechicle Routing
- Capacited Models
- Time Windows models
- Rich Models

Timetabling

- Educational Timetabling
- School/Class timetabling
- University/Course timetabling
- curriculum planning
- project assignment
- Personnel/Employee timetabling
- Crew scheduling
- Crew rostering
- Transport Timetabling
- Sports Timetabling
- Communication Timetabling

Outline

1. Reservations without slack
2. Reservations with slack
3. Timetabling with one Operator
4. Timetabling with Operators
5. Educational Timetabling

Reservations without slack

Given:

- m parallel machines (resources)
- n activities
- r_{j} starting times (integers),
d_{j} termination (integers),
w_{j} or $w_{i j}$ weight,
M_{j} eligibility
- without slack $p_{j}=d_{j}-r_{j}$

Task: Maximize weight of assigned activities
Examples: Hotel room reservation, Car rental

Polynomially solvable cases

1. $p_{j}=1$

Solve an assignment problem at each time slot
2. $w_{j}=1, M_{j}=M$, Obj. minimize resources used

- Corresponds to coloring interval graphs with minimal number of colors
- Optimal greedy algorithm (First Fit):
order $r_{1} \leq r_{2} \leq \ldots \leq r_{n}$
Step 1 assign resource 1 to activity 1
Step 2 for j from 2 to n do
Assume k resources have been used.
Assign activity j to the resource with minimum feasible value from $\{1, \ldots, k+1\}$

Reservations without slac
Reservations with slack
Timetabling with one Op.
Timetabling w. Operators
Educational Timetabling

Reservations without slacl
Reservations with slack
Timetabling with one Op.
Timetabling w. Operators
Educational Timetabling

3. $w_{j}=1, M_{j}=M$, Obj. maximize activities assigned

- Corresponds to coloring max \# of vertices in interval graphs with k colors
- Optimal k-coloring of interval graphs:
order $r_{1} \leq r_{2} \leq \ldots \leq r_{n}$
$J=\emptyset, j=1$
Step 1 if a resource is available at time r_{j} then assign activity j to that resource; include j in J; go to Step 3
Step 2 Else, select j^{*} such that $C_{j^{*}}=\max _{j \in J} C_{j}$
if $C_{j}=r_{j}+p_{j}>C_{j^{*}}$ go to Step 3
else remove j^{*} from J, assign j in J
Step 3 if $j=n$ STOP else $j=j+1$ go to Step 1

Outline

Timetabling with one Op. Timetabling w. Operators Educational Timetabling

1. Reservations without slack
2. Reservations with slack
3. Timetabling with one Operator
4. Timetabling with Operators
5. Educational Timetabling

Reservations with Slack

Given:

- m parallel machines (resources)
- n activities
- r_{j} starting times (integers),
d_{j} termination (integers),
w_{j} or $w_{i j}$ weight,
M_{j} eligibility
- with slack $p_{j} \leq d_{j}-r_{j}$

Task: Maximize weight of assigned activities

Heuristics

Most constrained variable, least constraining value heuristic $\left|M_{j}\right|$ indicates how much constrained an activity is
$\nu_{i t}$: \# activities that can be assigned to i in $[t-1, t]$
Select activity j with smallest $l_{j}=f\left(\frac{w_{j}}{P_{j}},\left|M_{j}\right|\right)$
Select resource i with smallest $g\left(\nu_{i, t+1}, \ldots, \nu_{i, t+p_{j}}\right)$ (or discard j if no place free for j)

Examples for f and g :

$$
\begin{gathered}
f\left(\frac{w_{j}}{p_{j}},\left|M_{j}\right|\right)=\frac{\left|M_{j}\right|}{w_{j} / p_{j}} \\
g\left(\nu_{i, t+1}, \ldots, \nu_{i, t+p_{j}}\right)=\max \left(\nu_{i, t+1}, \ldots, \nu_{i, t+p_{j}}\right) \\
g\left(\nu_{i, t+1}, \ldots, \nu_{i, t+p_{j}}\right)=\sum_{l=1}^{p_{j}} \frac{\nu_{i, t+l}}{p_{j}}
\end{gathered}
$$

Outline

1. Reservations without slack
2. Reservations with slack
3. Timetabling with one Operator
4. Timetabling with Operators
5. Educational Timetabling

Timetabling with one Operator

There is only one type of operator that processes all the activities

Example:

- A contractor has to complete n activities.
- The duration of activity j is p_{j}
- Each activity requires a crew of size W_{j}.
- The activities are not subject to precedence constraints.
- The contractor has W workers at his disposal
- His objective is to complete all n activities in minimum time.
- RCPSP Model
- If p_{j} all the same \rightarrow Bin Packing Problem (still NP-hard)

Example: Exam scheduling

- Exams in a college with same duration.
- The exams have to be held in a gym with W seats.
- The enrollment in course j is W_{j} and
- all W_{j} students have to take the exam at the same time.
- The goal is to develop a timetable that schedules all n exams in minimum time.
- Each student has to attend a single exam.
- Bin Packing model
- In the more general (and realistic) case it is a RCPSP

Heuristics for Bin Packing

- Construction Heuristics
- Best Fit Decreasing (BFD)
- First Fit Decreasing (FFD)

$$
C_{\max }(F F D) \leq \frac{11}{9} C_{\max }(O P T)+\frac{6}{9}
$$

- Local Search:
[Alvim and Aloise and Glover and Ribeiro, 1999] Step 1: remove one bin and redistribute items by BFD
Step 2: if infeasible, re-make feasible by redistributing items for pairs of bins, such that their total weights becomes equal (number partitioning problem)
[Levine and Ducatelle, 2004]
The solution before local search (the bin capacity is 10):
The bins:
| $333|621| 52|43| 72|54|$

Open the two smallest bins:

Remaining:	$\|333\| 621\|72\| 54 \mid$
Free items:	$5,4,3,2$

Try to replace 2 current items by 2 free items, 2 current by 1 free or 1 current by 1 free:
First bin: $\quad 333 \rightarrow 352$ new free: $4,3,3,3$
Second bin: $\quad 621 \rightarrow 64$ new free: $3,3,3,2,1$
Third bin: $\quad 72 \rightarrow 73$ new free: $3,3,2,2,1$
Fourth bin: 54 stays the same
Reinsert the free items using FFD:
Fourth bin: $\quad 54 \rightarrow 541$
Make new bin: 3322
Final solution: $\quad|352| 64|73| 541|3322|$

Outline

1. Reservations without slack
2. Reservations with slack
3. Timetabling with one Operator
4. Timetabling with Operators
5. Educational Timetabling

Timetabling with Operators

- There are several operators and activities can be done by an operator only if he is available
- Two activities that share an operator cannot be scheduled at the same time

Examples:

- aircraft repairs
- scheduling of meetings (people \rightarrow operators; resources \rightarrow rooms)
- exam scheduling (students may attend more than one exam \rightarrow operators)

If $p_{j}=1 \rightarrow$ Graph-Vertex Coloring (still NP-hard)

Mapping to Graph-Vertex Coloring

- activities $\boldsymbol{\rightarrow}$ vertices
- if 2 activities require the same operators \rightarrow edges
- time slots \rightarrow colors
- feasibility problem (if \# time slots is fixed)
- optimization problem

DSATUR heuristic for Graph-Vertex Coloring
saturation degree: number of differently colored adjacent vertices
set of empty color classes $\left\{C_{1}, \ldots, C_{k}\right\}$, where $k=|V|$
Sort vertices in decreasing order of their degrees
Step 1 A vertex of maximal degree is inserted into C_{1}.
Step 2 The vertex with the maximal saturation degree is chosen and inserted according to the greedy heuristic (first feasible color). Ties are broken preferring vertices with the maximal number of adjacent, still uncolored vertices; if further ties remain, they are broken randomly.

Outline

1. Reservations without slack
2. Reservations with slack
3. Timetabling with one Operator
4. Timetabling with Operators
5. Educational Timetabling

Educational timetabling process

Phase:	Planning	Scheduling	Dispatching
Horizon:	Long Term	Timetable Period	Day of Operation
Objective:	Service Level	Feasibility	Get it Done
Steps:	Manpower, Curriculum, Equipment	Quarterly Timetabling, Project assignment, student sectioning	Repair

