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Note 1 The project is carried out individually and it is not allowed to collaborate. It consists of:
algorithm design, implementation, experimentation and written report.

The evaluation of the project is based on the report. However, a program that implements the
best algorithm described in the report must also be submitted. The program will serve to verify the
correctness of the results presented. The report may be written in English or in Danish.

Note 2 Corrections or updates to the project description will be published on the course web page
and will be announced by email to the addresses available in the Blackboard system. In any case, it
remains students’ responsibility to check for updates on the web page.

Note 3 Submission. An archive containing the electronic version of the written report and the source
code of the program must be handed in through the Blackboard system before 12:00 of Monday, 25
January 2011. This is the procedure:

- choose the course DM811 in Blackboard,

- choose "Exam Project Hand In" in the menu on the left,

- Vll the form and conclude with submit,

- print the receipt (there will be a receipt also per email).

See Appendix C for details on how to organize the electronic archive. Reports and codes handed
in after the deadline will generally not be accepted. System failures, illness, etc. will not automatically
give extra time.

1 Introduction

Several hard graph problems become easy when restricted to trees. Based on this fact one would like
to Vnd out how “tree-like” a given graph is. This question is the source of the concept of tree decom-
position introduced by Neil Robertson and Paul Seymour [RS84]. Related to the tree decomposition
is the treewidth measure, the smaller the treewidth number the more tree-like the graph is. Recently,
treewidth received interest in Vxed-parameter tractability as the parameter in which many problems
are recognized as tractable.

Instances of constraint satisfaction problem can be solved eXciently if the treewidth of the corre-
sponding constrained graph is small [RN03]. The solution method Vrst generates a tree decomposition
with small treewidth, solves the problem by dynamic programming at each vertex of the decomposition
and computes the overall Vnal solution from the knowledge of the solution in the separated problems.

Other uses of tree decomposition appear in expert system applications [SL90]. Decision support
systems have probabilistic networks as underlying knowledge representation. In this networks depen-
dencies between variables are modelled using directed graphs: to each vertex corresponds a vertex of
the graph and there is an arc between two vertices if the corresponding variables are in a dependency
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relation. An important problem on this network is probabilistic inference: determining the probability
distribution for a variable given a value assignment for the other variables. An eXcient algorithm to
carry out inference is based on a tree decomposition of the graph.

Finally, in computational biology, tree decomposition has been used for protein structure predic-
tion.

2 Basic DeVnitions

All graphs we consider are undirected and simple, i.e., without loops or parallel edges. A graph G
consists of a set of vertices V (G) and edges E(G). Every edge is incident with two vertices. Vertices
linked by an edge are said to be adjacent and the set of vertices adjacent to v in graph G = (V,E) is
denoted by AG(v) = {w ∈ V | vw ∈ E}. The size of AG(v) is the degree of a vertex and is denoted
by dG(v).

For a vertex set W ⊆ V the subgraph of G = (V,E) induced by W is G[W ] = (W, {uv ∈
E | u, v ∈ W}). A set of vertices Q is called a clique if there is an edge between each pair of distinct
vertices of Q. The maximum cardinality of a clique in G is denoted by ω(G). A cycle of length j is a
sequence of distinct vertices [v = v1, v2, . . . , vj = v] such that for all 1 ≤ i < j we have vivi+1 ∈ E.
A chord is an edge between two non-consecutive vertices in a cycle. A graph is connected if for each
u, v ∈ V , there is a path between u and v. A tree T = (V,E) is a connected graph with no cycle.

DeVnition 1. Tree Decomposition [RS84]
Let G = (V,E) be a graph. A tree decomposition of G is a pair (T,X), where T is a tree and
X = {Xi | i ∈ V (T )} is such that:

(i)
⋃
i∈V (T )Xi = V (G),

(ii) for all vw ∈ E, there is an i ∈ V (T ) with v, w ∈ Xi,

(iii) for all i, j, k ∈ V (T ): if j lies on the path from i to k in T then Xi ∩Xk ⊆ Xj .

Each Xi is also called a bag. The width of (T,X) is max{|Xi| − 1 | i ∈ V (T )}.

DeVnition 2. Treewidth
The treewidth of G denoted by tw(G) is the minimum k such that G has a tree decomposition of width
k.

An example of tree decomposition is given in Figure 1. A clique of n vertices has treewidth n− 1.
The corresponding tree decomposition trivially consists of one bag containing all graph vertices. In
fact, no tree decomposition with smaller width is attainable. More generally, it is known that every
complete subgraph of a graph G is completely “contained” in a bag of G’s tree decomposition. In
contrast, a tree has treewidth 1 and the bags of the corresponding tree decomposition are simply the
two-element vertex sets formed by the edges of the tree.1

Computing the treewidth is NP-hard [ACP87].

1An intuitively appealing characterization of tree decomposition is in terms of the cops-and-robbers game. The robber
stands on a vertex of the graph and can at any time run at great speed to any other vertex along a path of the graph. However,
he is not permitted to run through a cop. There are k cops, each of whom at any time either stands on a vertex or is in a
helicopter (that is, he is temporarily removed from the game). The objective of the player controlling the movement of the
cops is to land a cop via helicopter on the vertex occupied by the robber, and the robber’s objective is to elude capture. (The
point of the helicopters is that cops are not constrained to move along paths of the graph — they move from vertex to vertex
arbitrarily.) The robber can see the helicopter approaching its landing spot and may run to a new vertex before the helicopter
actually lands. Thus, for the cops to capture the robber they will need to Vrst occupy all vertices adjacent to the vertex where
the capture is to take place, because otherwise the robber will be able to run to a diUerent vertex and not be captured. The
cops can see the robber at all times — the diXculty is just to corner him somewhere.

The minimum number of cops needed to catch a robber is the treewidth of the graph plus one.
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Figure 1: A graph with eight vertices and a tree decomposition of it onto a tree with six nodes. Each
graph edge connects two vertices that are listed together at some tree node, and each graph vertex is
listed at the nodes of a contiguous subtree of the tree. Each tree node lists at most three vertices, so the
width of this decomposition is two.

A graph is called triangulated if every cycle of length at least four contains a chord. Triangulated
graphs are also called chordal due to the presence of a chord in every cycle. Computing the tree width
for triangulated graphs can be done in linear time.

Proposition 1. [Gav72] If G is triangulated, tw(G) = ω(G)− 1 and computing ω(G) can be done in
O(n+m).

For an arbitrary graph G = (V,E), it is interesting to look for a triangulated graph that contains
G. A triangulated graph H = (V,ET ), with E ⊆ ET , is called a triangulation for G. A triangulation
H = (V,ET ) is a minimal triangulation of G = (V,E) if there is no triangulation of G that is a
proper subgraph of H , i.e., if there is no set of edges F such that (V, F ) is a triangulation of G with
F ⊆ ET , F 6= ET .

Proposition 2. For every graph G there exists a triangulation H∗ such that tw(H∗) = tw(G).

Corollary 1. Finding the treewidth of a graph G is equivalent to Vnding a triangulationH∗ of G with
minimum size of the maximum clique.

Since Vnding the treewidth of a graph is NP -hard, also Vnding a triangulation with minimum
clique number is an NP-hard problem. However each triangulation H of G gives an upper bound of
tw(G) and its clique number can be computed in linear time.

In the following we describe how triangulation can be built. For a graph G, a vertex is said to be
simplicial if the subgraph induced byAG(v) is a clique. An (elimination) ordering π : {1, 2, . . . , n} 7→
V is a perfect elimination ordering for G if for any i ∈ {1, . . . , n}, π(i) is a simplicial vertex in
G[{π(i), . . . , π(n)}], that is, the subgraph induced by the set of vertices adjacent to v that succeed it
in π, {w ∈ AG(w) | π−1(v) < π−1(w)} form a clique.

Proposition 3. (Fulkerson and Gross, 1965) G is triangulated if and only if it has a perfect elimination
ordering.

Given a perfect elimination ordering, the maximal cliques ofG are of the form {v}∪M(v), where
M(v) = {w ∈ AG(v) : π−1(v) < π−1(w)} denotes the set of higher ordered adjacent vertices.

Proposition 4. (Arnborg 1985) For a triangulated graph G the value maxv∈V |M(v)| derived from a
perfect elimination scheme equals the tree width of G.

Another connection of tree decomposition of graphs with algorithmic graph theory are graph separators, that is, vertex
sets whose removal from the graph separates the graph into two or more connected components. Actually each bag of a tree
decomposition forms a separator of the corresponding graph.
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function Triangulation;1

input a graph G = (V,E), an elimination ordering π;2

output H = (V,Eπ) a triangulation for G with tw(H) ≥ tw(G);3

H = G;4

for v ∈ V do5

M(v) := AG(v);6

Eπ := E, tw := 0;7

for i = 1 to n do8

v := π(i);9

if |M(v)| > tw then10

tw := |M(v)|; // update treewidth11

for u,w ∈M(v) and uw 6∈ Eπ do12

Eπ := Eπ ∪ uw ; // add edge between higher ordered neighbors13

M(u) :=M(u) ∪ {w},M(w) :=M(w) ∪ {u} ; // update adjacency list14

for u ∈M(v) do15

M(u) :=M(u) \ {v} ; // v is lower ordered than u16

return (H);17

Figure 2: Graph triangulation according to an elimination ordering π

For an arbitrary (non-triangulated) graphG = (V,E) and an elimination scheme π, a triangulation
H = (V,Eπ) can be constructed by the algorithm in Figure 2 [Par61, Ros70]. Moreover, the algorithm
returns the treewidth ofH , which is an upper bound for the treewidth of G. The algorithm adds edges
to G to make it triangulated. Vertices are eliminated in the elimination ordering π. At each step i of
the algorithm, the necessary edges to make v = π(i) be a simplicial vertex are added to the current
graph. Then the vertex is deleted. Let m′ = |Eπ|. This algorithm can be implemented in O(n +m′)
time [Ros70].

The application of the algorithm Triangulation on a given graph G is illustrated in Figure 3.
Suppose that we are given the following elimination ordering: π(1) = 10, π(2) = 9, π(3) = 8, . . ..
The vertex 10 is Vrst eliminated from G. When this vertex is eliminated no new edges are added in
the graph G and H (graph H is not shown in the Vgure), as all neighbors of node 10 are connected.
Further from the remaining graph G the vertex 9 is eliminated. To connect all neighbors of vertex 9,
two new edges are added in G and H (edges (5, 8) and (6, 7)). The process of elimination continues
until the triangulation H is obtained.

Proposition 5. For a triangulated graph G there is a tree decomposition (T,X) such that for each
i ∈ V (T ), Xi is a clique in G.

Thus during the vertex elimination process of the algorithm of Figure 2 a tree decomposition can
be obtained. First the nodes of tree decomposition are created. This is illustrated in Figure 3. When
vertex 10 is eliminated a new tree decomposition node is created. This node contains the vertex 10
and all other vertices which are connected with this vertex in current graph G. Further the next tree
node with vertices {5, 6, 7, 8, 9} is created when the vertex 9 is eliminated. To the end of elimination
process all tree decomposition nodes will be created. The created tree nodes should be connected,
such that the connectedness condition for the vertices is fulVlled. This is the third condition in the
tree decomposition deVnition of DeVnition 1. To fulVl this condition the tree decomposition nodes are
connected as following. The tree decomposition node with vertices {10, 9, 8} that is created when
vertex 10 is eliminated, is connected with the tree decomposition node which will be created when the
next vertex in the ordering which appear in {10, 9, 8} is eliminated. In this case the node {10, 9, 8}
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Figure 3: Illustration of the elimination of nodes 10, 9 and 8 and generation of tree decomposition
nodes during the construction of a triangulation

function PermutationToTreeDecomposition;1

input a graph G = (V,E), an elimination ordering π(1), . . . , π(n);2

output (T,X) a tree decomposition;3

v = π(1);4

if |V | = 1 then5

return a tree decomposition with one bag Xv = {v}6

Compute the graph G′ = (V ′, E′) by adding to E an edge between each pair of non-adjacent7

vertices in the graph induced by AG(v) and removing v from V ;
(T ′ = (V ′, F ′), {Xi | i ∈ V ′}) := PermutationToTreeDecomposition(G′, π(2), . . . , π(n));8

Let vj be the lowest numbered neighbor of v, i.e., j = min{i | {v, vi} ∈ E};9

Construct a bag Xv = AG(v) ∪ {v};10

return (T = (V, F ), {Xi | i ∈ V }) with F = F ′ ∪ {v, vj}11

Figure 4: A recursion algorithm to derive a tree decomposition from an elimination ordering

should be connected with the node created when vertex 9 is eliminated, because this is the next vertex
in the ordering that is contained in {10, 9, 8}. This rule is further applied for connection of other tree
decomposition nodes. This procedure can be formalized in the recursive algorithm of Figure 4.

3 Project Requirements

The aim of the project is to study heuristic algorithms for Vnding the treewidth of arbitrary graphs
and compare the heuristics on the test instances of Table 1. In the table the best known lower bounds
(LB) and upper bounds (UB) for those instances are given. The instances can be downloaded from the
course web site.

All the following points must be addressed to pass the exam:

1. Implement the procedure Triangulation of Figure 2 and compute the treewidth of random
elimination ordering. Call this algorithm Random and use its results as control benchmark for
your heuristics. As a minimal requirement they must do better than that.

2. Design and implement one or more construction heuristics that perform better than Random.

5



DM811 – Fall 2010 Exam Project

name |V | |E| LB UB Time Lim.
myciel3 11 20 4 5 1
queen5_ 5 25 160 12 18 10
queen6_ 6 36 290 15 25 10
queen7_ 7 49 476 20 35 10
queen8_ 8 64 728 23 46 10
queen9_9 81 1056 26 58 10
queen10_10 100 1470 31 72 500
queen11_11 121 1980 34 88 500
queen12_12 144 2596 37 104 500
queen13_13 169 3328 42 122 500
queen14_14 196 4186 45 141 500
queen15_15 225 5180 48 163 500
queen16_16 256 6320 53 186 500
dsjc125.1 125 736 16 65 900
dsjc125.5 125 3891 62 109 900
dsjc125.9 125 6961 108 119 900
dsjc250.1 250 3218 32 173 900
dsjc250.5 250 15668 125 232 900
dsjc250.9 250 27897 218 243 900

Table 1: The set of test instances with vertex set size, number of edges, lower bound, upper bound and
time limit in seconds to use. The instance myciel3 is for debugging purposes. The remaining instances
are divided into two main classes, queens graphs and uniform random graphs (dsjc).

3. Design and implement one or more local search algorithms.

4. Design and implement an eUective algorithm enhancing the heuristics at the previous two points
with the use of stochastic local search methods and metaheuristics.

5. For all the methods above carry out an experimental analysis and draw sound conclusions.

In the experimental assessment all algorithms the maximum time in seconds allowed per run on a
single instance is given in Table 1.2

4 Remarks

Remark 1 For each point above a description must be provided in the report of the work undertaken.
In particular for the best algorithms arising from the experimental analysis enough details must be
provided in order to guarantee the reproducibility of the algorithm from the report only (i.e., without
having to look at the source code).

Remark 2 The results of the experiments must be reported either in graphical form or in form of
tables or both. Moreover, for the best solver resulting from the point 4, a table must be provided with
the best results for each speciVc instance of Table 1.

Remark 3 The total length of the report should not be less than 5 pages and not be more than 12
pages, appendix included (lengths apply to font size of 11pt and 3cm margins). Although these bounds
are not strict, their violation is highly discouraged. In the description of the algorithms, it is allowed

2Times refer to machines in IMADA terminal room.
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(and encouraged) to use short algorithmic sketches in form of pseudo-code but not to include program
codes.

Remark 4 This is a list of factors that will be taken into account in the evaluation:

• quality of the Vnal results;

• level of detail of the study;

• complexity and originality of the approaches chosen;

• organization of experiments which guarantee reproducibility of conclusions;

• clarity of the report;

• eUective use of graphics in the presentation of experimental results.
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Appendix A Instance Format

All graphs are in DIMACS format. It consists of a Vle in which each line begins with a letter that
deVnes the content of the line. The legal lines are:

• c Comment: remainder of line ignored.

• p Problem: is of form:

– p edge n m where n is the number of vertices (to be numbered 1..n) and m the number of
edges.

• e Edge: is of the form e n1 n2 where n1 and n2 are the endpoints of the edge.

Appendix B Solution Format

In order to check the validity of the results reported, the program submitted must output when Vnishing
the best solution found during its execution in a Vle with extension .sln. The Vle must be in text format
and contain

• In the Vrst line the treewidth

• In the second line the corresponding elimination ordering, that is, an ordered list of vertices

Appendix C Handing in Electronically

The electronic archive to hand in must be organized as follows. It expands in a main directory named
with the Vrst 6 digits of your CPR number (e.g., 030907). The directory has the following content:

CPRN/README
CPRN/report/
CPRN/src/
CPRN/data/

The directory reprot contains a pdf or postscript version of your report. Do not put your name in
the author Veld of the report, instead put your CPR number. The Vle README provides instructions
for compilation of the program. The directory src contains the sources which may be in C, C++,
Java or other languages. If needed a MakeVle can be included either in the root directory or in src.
After compilation the executable must be placed in src. For java programs, a jar package can also be
submitted. The directory data contains the instances.

Programs must work on IMADA’s computers under Linux environment and with the compilers and
other applications present on IMADA’s computers. Students are free to develop their program at home,
but it is their own responsibility to transfer the program to IMADA’s system and make the necessary
adjustments such that it works at IMADA.3 Comet version 1.3 is also installed.

The executable must be called treewidth. It must execute from command line by typing in the
directory CPRN/src/:

fctt -i INSTANCE -t TIME -s SEED -o OUTPUT

where the Wags indicate:

3Past issue: the java compiler path is /usr/local/bin/javac; in C, any routine that uses subroutines from the math.c
library should be compiled with the -lm Wag – eg, cc floor.c -lm.
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• -i INSTANCE the input instance;

• -t TIME the time limit in seconds;

• -s SEED the random seed;

• -o OUTPUT the Vle name where the solution is written.

For example:

treewidth -i data/queen15_15.col -o queen15_15.sln -t 180 -s 1 > queen15_15.log

will run the program on the instance queen15_15.col opportunely retrieved from the given path for
180 seconds with random seed 1 and write the solution in the Vle queen15_15.sln.

In its default mode, the program must run the best algorithm developed and must print on the
standard output only one single number at the end of the run corresponding to the quality of the best
solution found during the run.

It is advisable to have a log of algorithm activities during the run. This can be achieved by printing
further information on the standard error or in a Vle. A suggested format is to output a line whenever
a new best solution is found containing at least the following pieces of information:

best 853 time 10.000000 iter 1000

All process times are the sum of user and system CPU time spent during the execution of a program
as returned by the linux C library routine getrusage. Process times include the time to read the
instance.
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