
Department of Mathematics and Computer Science
University of Southern Denmark, Odense

October 9, 2008

Marco Chiarandini

DM811 - Heuristics for Combinatorial Optimization

Exam Project, Fall 2008

Note 1 The project is carried out individually and it is not allowed to collaborate. It
consists of: algorithm design, implementation, experimentation and written report.

The evaluation of the project is based on the report. However, a program that imple-
ments the best algorithm described in the report must also be submitted. The program will
serve to verify the correctness of the results presented. The report may be written in either
English or Danish.

Note 2 Corrections or updates to the project description will be published on the course
web page and will be announced by email to the addresses available in the Blackboard
system. In any case, it remains students’ responsibility to check for updates on the web
page.

Note 3 Submission. An archive containing the electronic version of the written report and
the source code of the program must be handed in through the Blackboard system before
12:00 of Monday, 27 October 2007. This is the procedure:

- choose the course DM811 in Blackboard,

- choose ”Exam Project Hand in” in the menu on the left,

- fill the form and conclude with submit,

- print the receipt (there will be a receipt also per email).

See Appendix C for details on how to organize the electronic archive. Reports and codes
handed in after the deadline will generally not be accepted. System failures, illness, etc. will
not automatically give extra time.

1 Problem Description

Given a finite ground set X = {x1, x2, . . . , xn}, a hypergraph is a collection H = (E1, E2, . . . , Em)
of distinct subsets of X. The elements of the set X are called vertices, and the elements of the
set H are called (hyper)edges. We assume that Ei 6= ∅, for all i = 1, 2, . . . , m, and

⋃m
i=1 Ei = X.

Moreover, we only deal with hypergraphs without loops, i.e., |Ej| ≥ 2. A hypergraph H is
called r-uniform if each edge E ∈ H has exactly r elements. A 2-uniform hypergraph is a
graph.

For a hypergraph H on X, a set S ⊆ X is said to be stable (or independent) if it does not
contain any edge E. A stable set is said to be maximal if it cannot be extended to a larger
one. A stable set is said to be maximum if it includes as many vertices as possible. The
stability number α(H) of H is the maximum cardinality of a stable set of H.

One can also define a hypergraph by its edge-vertex incidence matrix A = [aij], with
rows representing the edges E1, E2, . . . , Em and columns representing the vertices x1, x2, . . . xn

1

DM811 – Fall 2008 Exam Project

x6

x7

x3

x5

x8

x1

E5

E2

E4
E1

x2
x4

E3

A =

E1
E2
E3
E4
E5


0 0 1 1 1 0 0 0
0 0 0 0 1 0 0 1
0 0 0 0 0 1 1 1
0 1 1 0 0 0 1 0
1 1 0 0 0 0 0 0



Figure 1: Representation of a hypergraph H and its incidence matrix. The set of vertices
x2, x3, x5, x6 form a maximal stable set. The set of vertices x1, x4, x5, x6, x7 is a maximal stable
set that is also maximum.

and with aij = 0 if xj 6∈ Ei and aij = 1 if xj ∈ Ei. See Figure 1 for an illustration of these
concepts and [Ber89] for a theoretical treatment on hypergraphs.

The problem of the project is then defined as follows.

Definition. Maximum Stable Set Problem on Hypergraphs (MSS)
Input: a hypergraph H on a ground set X.
Task: find a maximum stable set S ⊆ X of H.

If weights are associated to vertices then we may be interested in the stable set of max-
imum total weight. In its weighted version the Maximum Stable Set Problem on Hyper-
graphs is equivalent to the integer linear programming problem

maximize cTx
subject to Ax ≤ pA − 1

x ∈ {0, 1}n

where A is the edge-vertex incidence matrix of the hypergraph, the ith component of the
vector pA gives the number of ones in the row i of the matrix A, 1 is the vector of all ones
of compatible dimension and c is a vector of nonnegative integer costs.

The generalization of the constraint Ax ≤ pA − 1 to Ax ≤ b, where b is a vector of
nonnegative integer numbers with b ≤ pA − 1, leads to the Generalized Set Packing

Problem which is defined as follows:

maximize cTx
subject to Ax ≤ b

x ∈ {0, 1}n.

The Maximum (Weighted) Stable Set Problem on Hypergraphs can be used for en-
coding constraint satisfaction problems (CSP) [PS03]. Assume we have a CSP with n vari-
ables v1, . . . , vn each with a domain di of size mi. In its hypergraph representation (X, H)
we have k variables with domain {0, 1}, where k = ∑n

i=1 mi. Variable xia = 1 corresponds
to the instantiation vi = a in the CSP, and xia = 0 corresponds to vi 6= a in the CSP. The
domain of each variable vi in the CSP is represented by a clique Km in (X, H), such that
there are edges (zia, zib) for all a, b ∈ di. The constraints in the original CSP are represented
as hyperedges in H. For example, a no-good (vi = a, vj = b, . . . , vr = j) constraint in the

2

DM811 – Fall 2008 Exam Project

CSP has the corresponding hyperedge (xia, xjb, . . . , xrj) in (X, H). Finding a solution to the
CSP corresponds then to finding an stable set of size n in (X, H).

An example of application of the Generalized Set Packing Problem is in mechanism
design for combinatorial auctions with single-minded bidders [Kry05]. A seller (auctioneer)
wants to sell m kinds of goods U, to n potential customers (bidders). A good e ∈ U
is available in be units (supply). Suppose each bidder j can valuate subsets of goods: a
valuation vj(S) ∈ R for a subset S ⊆ U means the maximum amount of money j is willing
to pay for getting S. For simplicity, assume that bidders can bid for 0 or a single unit of a
good, i.e., aej in the matrix A is in {0, 1} for all e ∈ U and S ⊆ U. An allocation of goods
to bidders is a packing S1, S2, . . . , Sn ⊆ U, i.e., bidder j gets set Sj and e appears at most be
times in S1, S2, . . . , Sn. The objective is to find an allocation with maximum social welfare,
∑j vj(Sj). Each vj is only known to bidder j and bidders are single-minded, i.e., for each
bidder j there exists a set Sj ⊆ U that he prefers and a v∗j ≥ 0, such that vj(S) = v∗j if Sj ⊆ S
and vj(S) = 0 otherwise.

For an application of GSP in scheduling see [Meg87].

2 Project Requirements

Preliminary tests conducted on the integer programming formulations solved by SCIP1

showed that uniform instances of the MSS and unweighted instances of the GSP are harder
to solve than non-uniform and weighted versions of these problems.

The aim of the project is, therefore, the study of heuristic algorithms to solve uniform
and unweighted instances of the Maximum Stable Set Problem on Hypergraphs. A set
of test instances is reported in Table 1. These instances are available for download from
the course web site. The instances are large enough to require an efficient implementation
of the algorithms designed. In the table, for some instances upper and lower bounds are
provided. The name of the instance contains indication of its size, i.e, if u-n-r-e-s.mss
then n is the number of vertices, r is the size of edges, e is the number of edges and s is the
instance identifier.

All the following points must be addressed to pass the exam:

1. Design and implement one or more construction heuristics.

2. Design and implement one or more local search algorithms.

3. Design and implement a high performing algorithm enhancing the heuristics at the
previous two points with the use of stochastic local search methods.

4. For all the methods above carry out an experimental analysis and draw sound con-
clusions. For the algorithms at point 3 use 5 minutes as time limit per each single
instance.2

3 Remarks

Remark 1 For each point above a description must be provided in the report of the work
undertaken. In particular for the best algorithms arising from the experimental analysis
enough details must be provided in order to guarantee the reproducibility of the algorithm
from the report only (i.e., without having to look at the source code).

1http://zibopt.zib.de/
2Times refer to machines in IMADA terminal room.

3

DM811 – Fall 2008 Exam Project

instance upper bound lower bound gap

u-1000-10-1000-01.mss 910.49 792 13.01 %
u-1000-10-1000-02.mss 910.65 792 13.03 %
u-1000-10-1000-03.mss 910.54 791 13.13 %
u-1000-10-1000-04.mss 910.34 795 12.67 %
u-1000-10-1000-05.mss 910.28 790 13.21 %
u-1000-10-1000-06.mss 911.42 789 13.43 %
u-1000-10-1000-07.mss 910.30 792 13.00 %
u-1000-10-1000-08.mss 911.13 801 12.09 %
u-1000-10-1000-09.mss 909.84 793 12.84 %
u-1000-10-1000-10.mss 911.18 790 13.30 %

u-1000-50-1000-01.mss 981.01 924 5.81 %
u-1000-50-1000-02.mss 981.08 926 5.61 %
u-1000-50-1000-03.mss 981.01 928 5.40 %
u-1000-50-1000-04.mss 981.00 926 5.61 %
u-1000-50-1000-05.mss 981.09 927 5.51 %
u-1000-50-1000-06.mss 980.99 930 5.20 %
u-1000-50-1000-07.mss 980.88 931 5.09 %
u-1000-50-1000-08.mss 981.01 930 5.20 %
u-1000-50-1000-09.mss 981.01 927 5.51 %
u-1000-50-1000-10.mss 981.01 929 5.30 %

u-1000-10-10000-01.mss 1000.00 −∞ infinite
u-1000-10-10000-02.mss 1000.00 −∞ infinite
u-1000-10-10000-03.mss 1000.00 −∞ infinite
u-1000-10-10000-04.mss 1000.00 −∞ infinite
u-1000-10-10000-05.mss 1000.00 −∞ infinite
u-1000-10-10000-06.mss 1000.00 −∞ infinite
u-1000-10-10000-07.mss 1000.00 −∞ infinite
u-1000-10-10000-08.mss 1000.00 −∞ infinite
u-1000-10-10000-09.mss 1000.00 −∞ infinite
u-1000-10-10000-10.mss 1000.00 −∞ infinite

u-1000-50-10000-01.mss 1000.00 −∞ infinite
u-1000-50-10000-02.mss 1000.00 −∞ infinite
u-1000-50-10000-03.mss 1000.00 −∞ infinite
u-1000-50-10000-04.mss 1000.00 −∞ infinite
u-1000-50-10000-05.mss 1000.00 −∞ infinite
u-1000-50-10000-06.mss 1000.00 −∞ infinite
u-1000-50-10000-07.mss 1000.00 −∞ infinite
u-1000-50-10000-08.mss 1000.00 −∞ infinite
u-1000-50-10000-09.mss 1000.00 −∞ infinite
u-1000-50-10000-10.mss 1000.00 −∞ infinite

Table 1: Four classes of random instances for the Maximum Stable Set Problem on Hy-
pergraphs. The upper and lower bounds are produced by SCIP in 300 seconds of running
time on an Intel Core 2 CPU 6300 at 1.86GHz, with 2048 KB cache and 2 GB RAM, running
an Ubuntu 8.04 distribution of Linux with kernel 2.6.24-19-generic.

4

DM811 – Fall 2008 Exam Project

Remark 2 Besides the description of the algorithm, it will make a case for higher grade an
analysis on the computational cost of the procedures implemented and details on the data
structure used. The level of detail of the article [ARW08] might be taken as example for a
high quality report.

Remark 3 The results of the experiments must be reported either in graphical form or in
form of tables. Moreover, for the best solver resulting from the point 3, a table must be
provided with the best results for each specific instance of Table 1.

Remark 4 The total length of the report should not be less than 8 pages and not be more
than 14 pages, appendix included (lengths apply to font size of 11pt and 3cm margins). Al-
though these bounds are not strict, their violation is highly discouraged. In the description
of the algorithms, it is allowed (and encouraged) to use short algorithmic sketches in form
of pseudo-code but not to include program codes.

Remark 5 This is a list of factors that will be taken into account in the evaluation:

• quality of the final results;

• level of detail of the study;

• complexity and originality of the approaches chosen;

• originality of the experimental questions;

• organization of experiments which guarantee reproducibility and correctness of the
conclusions;

• clarity of the report;

• effective use of graphics in the presentation of experimental results.

Appendix A Instance Format

The instance format is an extension of the DIMACS format used for several problems on
graphs. Each line of the file begins with a letter that defines the rest of the line. The legal
lines are:

• c comment: remainder of line ignored.

• p type n m, where n is the number of nodes (to be numbered 1, . . . n) and m the
number of edges.

• v u w, where the first v is the letter indicating that the line is about a vertex, u is
a number identifying the vertex (from 1 to n) and w is the weight of the vertex (all
instances of the project have however weight 1).

• e b v1 v2 . . . vk where e is the letter indicating that the line is about an edge, b is the
size of the maximum number of vertices that can be picked from this edge (in the case
of MSS instances this value is equal to |E| − 1 while for GSP it is equal to bi in the
model that defines the problem), v1 v2 . . . vk are the vertices that compose the edge
(k can be the same for all edges in the case of uniform hypergraphs or vary in the case
of non-uniform hypergraphs).

5

DM811 – Fall 2008 Exam Project

Example for the instance of Figure 1:

p mss 8 5
v 1 1
v 2 1
v 3 1
v 4 1
v 5 1
v 6 1
v 7 1
v 8 1
e 1 1 2
e 2 2 3 7
e 2 3 4 5
e 2 7 6 8
e 1 8 5

Appendix B Solution Format

In order to check the validity of the results reported the program submitted must output
the solution in a file when finishing. The format of the file is a column of numbers corre-
sponding to the vertices selected to be member of the stable set. Vertices labels go from 1 to
n. Each vertex must be preceded by the letter s.
Example:

s 1
s 4
s 5
s 6
s 7

A program to check the validity of the solution reported is made available at the course
web page.

Appendix C Handing in Electronically

The electronic archive to hand in must be organized as follows. It expands in a main
directory:

CPRN/

where CPRN is the student’s first 6 digits of the CPR number (e.g., 030907) and its content:

CPRN/README
CPRN/Report/
CPRN/src/

The file README contains the manual for the compilation of the program. The direc-
tory src contains the sources which may be in C, C++, Java or other languages. If needed

6

DM811 – Fall 2008 Exam Project

a Makefile can be included either in the root directory or in src. After compilation the
executable must be placed in src. For java programs, a jar package can also be submitted.

Programs must work on IMADA’s computers under Linux environment and with the
compilers and other applications present on IMADA’s computers. Students are free to
develop their program at home, but it is their own responsibility to transfer the program to
IMADA’s system and make the necessary adjustments such that it works at IMADA.3

The executable must be called mss. It will be run by typing in the directory CPRN/src/:

mss -i INSTANCE -t TIME -s SEED -o OUTPUT

• -i INSTANCE to load the data associated with the file INSTANCE.

• -t TIME to stop the program execution after TIME seconds. The test machine could
not be totally dedicated at the moment of execution.

• -s SEED to initialize the random generator.

• -o OUTPUT the file name where the solution is written

For example:

mss -i u-100-50-1000-01.mss -o u-100-50-1000-01.sol -t 300 -s 1

will run the program on the instance u-100-50-1000-01.mss opportunely retrieved from
the given path for 300 seconds with random seed 1 and write the solution in the file
u-100-50-1000-01.sol.

It is advisable to have a log of algorithm activities during the run. This can be achieved
by printing further information on the standard error or in a file. A suggested format is to
output a line whenever a new best solution is found containing at least the following pieces
of information:

best 853 time 10.000000 iter 1000

All process times are the sum of user and system CPU time spent during the execution
of a program as returned by the linux library routine getrusage. Process times include the
time to read the instance.

References

[ARW08] Diogo V. Andrade, Mauricio G. C. Resende, and Renato F. Werneck. Fast local
search for the maximum independent set problem. Technical Report TD-7BBST2,
AT&T Labs Research, Florham Park, NJ, USA, 2008. (available from http://www.
optimization-online.org/DB_HTML/2008/02/1898.html).

[Ber89] Claude Berge. Hypergraphs. North-Holland, Amsterdam, Holland, 1989.

[Kry05] Piotr Krysta. Greedy approximation via duality for packing, combinatorial auc-
tions and routing. In Joanna Jedrzejowicz and Andrzej Szepietowski, editors,
Proceedings of Mathematical Foundations of Computer Science, 30th International Sym-
posium, MFCS 2005, volume 3618 of Lecture Notes in Computer Science, pages 615–
627. Springer, 2005. (Held in Gdansk, Poland, August 29 - September 2, 2005).

3Past issue: the java compiler path is /usr/local/bin/javac; in C, any routine that uses subroutines from
the math.c library should be compiled with the -lm flag – eg, cc floor.c -lm.

7

DM811 – Fall 2008 Exam Project

[Meg87] N. Megiddo. On the complexity of solving the generalized set packing problem
approximately. Technical Report RJ 5898, IBM Almaden Research Center, San
Jose, California, 1987.

[PS03] Patrick Prosser and Evgeny Selensky. A study of encodings of constraint sat-
isfaction problems with 0/1 variables. In Barry O’Sullivan, editor, International
Workshop on Constraint Solving and Constraint Logic Programming, volume 2627 of
Lecture Notes in Computer Science, pages 121–131. Springer, 2003.

8

