
DM811

Heuristics for Combinatorial Optimization

Lecture 11
Efficient Local Search

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Efficient Local SearchOutline

1. Efficient Local Search
Application Examples

3

Efficient Local SearchEfficiency vs Effectiveness

The performance of local search is determined by:

1. quality of local optima (effectiveness)

2. time to reach local optima (efficiency):

A. time to move from one solution to the next

B. number of solutions to reach local optima

4

Efficient Local Search

Note:
Local minima depend on evaluation function f and neighborhood
function N .
Larger neighborhoods N induce

neighborhood graphs with smaller diameter;
fewer local minima.

Ideal case: exact neighborhood, i.e., neighborhood function
for which any local optimum is also guaranteed to be
a global optimum.

Typically, exact neighborhoods are too large to be searched effectively
(exponential in size of problem instance).

5

Efficient Local Search

Trade-off (to be assessed experimentally):

Using larger neighborhoods
can improve performance of LS algorithms.
But: time required for determining improving search steps
increases with neighborhood size.

Speedups Techniques for Efficient Neighborhood Search

1) Incremental updates

2) Neighborhood pruning

6

Efficient Local SearchSpeedups in Neighborhood Examination

1) Incremental updates (aka delta evaluations)

Key idea: calculate effects of differences between
current search position s and neighbors s ′ on
evaluation function value.

Evaluation function values often consist of
independent contributions of solution components;
hence, f (s) can be efficiently calculated from f (s ′) by differences
between s and s ′ in terms of solution components.

Typically crucial for the efficient implementation of
II algorithms (and other LS techniques).

7

Efficient Local Search

Do not do this:

tmp ← current
while ∃ unseen sol in N(current) do

change current into sol
evaluate current
if current better than tmp then

break;
current ← tmp

Do this:

while ∃ unseen sol in N(current) do
evaluate changes at current
if improving then

change current into sol

8

Efficient Local Search

Example: Incremental updates for TSP

solution components = edges of given graph G
standard 2-exchange neighborhood, i.e., neighboring
round trips p, p′ differ in two edges

w(p′) := w(p) − edges in p but not in p′

+ edges in p′ but not in p

Note: Constant time (4 arithmetic operations), compared to
linear time (n arithmetic operations for graph with n vertices)
for computing w(p′) from scratch.

9

Efficient Local Search

2) Neighborhood Pruning

Idea: Reduce size of neighborhoods by excluding neighbors that are
likely (or guaranteed) not to yield improvements in f .
Note: Crucial for large neighborhoods, but can be also very useful for
small neighborhoods (e.g., linear in instance size).

Example: Heuristic candidate lists for the TSP

Intuition: High-quality solutions likely include short edges.
Candidate list of vertex v : list of v ’s nearest neighbors (limited number),
sorted according to increasing edge weights.
Search steps (e.g., 2-exchange moves) always involve edges to elements
of candidate lists.
Significant impact on performance of LS algorithms
for the TSP.

10

Efficient Local SearchOverview

Delta evaluations and neighborhood examinations in:

Permutations
TSP
SMTWTP, Parallel Machine, Bin Packing

Assignments
CSP, SAT, GCP, Bin Packing

Sets
Set Covering, Max Independent Set, p-median

12

Efficient Local SearchLocal Search for the Traveling Salesman Problem

k-exchange heuristics
2-opt
2.5-opt
Or-opt
3-opt

complex neighborhoods
Lin-Kernighan
Helsgaun’s Lin-Kernighan
Dynasearch
ejection chains approach

Implementations exploit speed-up techniques
1. neighborhood pruning: fixed radius nearest neighborhood search
2. neighborhood lists: restrict exchanges to most interesting candidates
3. don’t look bits: focus perturbative search to “interesting” part
4. sophisticated data structures

14

Efficient Local Search

TSP data structures
Tour representation:

reverse(a, b)
succ

prec

sequence(a,b,c) – check whether b is within a and b
Possible choices:

|V | < 1.000 array for π and π−1

|V | < 1.000.000 two level tree
|V | > 1.000.000 splay tree

Moreover static data structure:
priority lists
k-d trees

15

Efficient Local Search

Look at implementation of local search for TSP by T. Stützle:

File: http://www.imada.sdu.dk/~marco/DM811/Lab/ls.c

two_opt_b(tour); % best improvement, no speedup
two_opt_f(tour); % first improvement, no speedup
two_opt_best(tour); % first improvement including speed-ups (dlbs, fixed

radius near neighbour searches, neughbourhood lists)
two_opt_first(tour); % best improvement including speed-ups (dlbs, fixed

radius near neighbour searches, neughbourhood lists)
three_opt_first(tour); % first improvement

16

Efficient Local Search

[Appelgate Bixby, Chvátal, Cook, 2006]

17

Efficient Local Search

18

Efficient Local SearchSingle Machine Total Weighted Tardiness Problem

Interchange: size
(n
2

)
and O(|i − j |) evaluation each

first-improvement: πj , πk

pπj ≤ pπk for improvements, wjTj +wkTk must decrease because jobs
in πj , . . . , πk can only increase their tardiness.

pπj ≥ pπk possible use of auxiliary data structure to speed up the com-
putation

best-improvement: πj , πk

pπj ≤ pπk for improvements, wjTj + wkTk must decrease at least as
the best interchange found so far because jobs in πj , . . . , πk

can only increase their tardiness.
pπj ≥ pπk possible use of auxiliary data structure to speed up the com-

putation

Swap: size n − 1 and O(1) evaluation each
Insert: size (n − 1)2 and O(|i − j |) evaluation each
But possible to speed up with systematic examination by means of
swaps: an insert is equivalent to |i − j | swaps hence overall examination
takes O(n2)

19

Efficient Local SearchThe Max Independent Set Problem

Max Independent Set (aka, stable set problem or vertex packing problem)

Given: an undirected graph G (V ,E) and a non-negative weight function ω
on V (ω : V → R)
Task: A largest weight independent set of vertices, i.e., a subset V ′ ⊆ V
such that no two vertices in V ′ are joined by an edge in E .

Related Problems:

Vertex Cover

Given: an undirected graph G (V ,E) and a non-negative weight function ω
on V (ω : V → R)
Task: A smallest weight vertex cover, i.e., a subset V ′ ⊆ V such that each
edge of G has at least one endpoint in V ′.

Maximum Clique

Given: an undirected graph G (V ,E)
Task: A maximum cardinality clique, i.e., a subset V ′ ⊆ V such that every
two vertices in V ′ are joined by an edge in E

20

Efficient Local SearchThe p-median Problem

Given:
a set U of locations for n users
a set F of locations of m facilities
a distance matrix D = [dij] ∈ Rn×m

Task: Select p locations of F where to install facilities such that
the sum of the distances of each user to its closest installed facility is
minimized, i.e.,

min
J

∑

i∈U

min
j∈F

dij J ⊆ F and |J| = p

21

