DM811

Heuristics for Combinatorial Optimization

Lecture 14 Race: A Configuration Tool

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

1. Introduction

2. Inferential Statistics Basics of Inferential Statistics **Experimental Designs**

3. Race: Sequential Testing

Outline

Introduction Inferential Statistics Sequential Testing

Outline

Introduction
Inferential Statistics
Sequential Testing

2

- 1. Introduction
- Experimental Designs

- 2. Inferential Statistics Basics of Inferential Statistics Experimental Designs

• There is a competition and two stochastic algorithms \mathcal{A}_1 and \mathcal{A}_2 are submitted.

• We run both algorithms once on n instances. On each instance either A_1 wins (+) or A_2 wins (-) or they make a tie (=).

Questions:

1. If we have only 10 instances and algorithm A_1 wins 7 times how confident are we in claiming that algorithm A_1 is the best?

2. How many instances and how many wins should we observe to gain a confidence of 95% that the algorithm A_1 is the best?

Introduction
Inferential Statistics
Sequential Testing

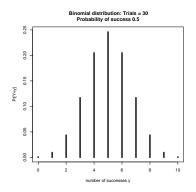
12

14

1 If we have only 10 instances and algorithm A_1 wins 7 times how confident are we in claiming that algorithm A_1 is the best?

Under these conditions, we can check how unlikely the situation is if it were $p(+) \leq p(-)$.

If p=0.5 then the chance that algorithm \mathcal{A}_1 wins 7 or more times out of 10 is 17.2%: quite high!



A Motivating Example

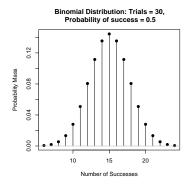
• p: probability that A_1 wins on each instance (+)

• n: number of runs without ties

• Y: number of wins of algorithm \mathcal{A}_1

If each run is independent and consitent:

$$Y \sim B(n,p)$$
: $\Pr[Y = y] = \binom{n}{y} p^y (1-p)^{n-y}$



Introduction
Inferential Statistics
Sequential Testing

2 How many instances and how many wins should we observe to gain a confidence of 95% that the algorithm A_1 is the best?

To answer this question, we compute the 95% quantile, *i.e.*, $y : \Pr[Y \ge y] < 0.05$ with p = 0.5 at different values of n:

n	10	11	12	13	14	15	16	17	18	19	20
y	9	9	10	10	11	12	12	13	13	14	15

This is an application example of sign test, a special case of binomial test in which p=0.5

General procedure:

- Assume that data are consistent with a null hypothesis H_0 (e.g., sample data are drawn from distributions with the same mean value).
- Use a statistical test to compute how likely this is to be true, given the data collected. This "likely" is quantified as the p-value.
- Accept H_0 as true if the p-value is larger than an user defined threshold called level of significance α .
- Alternatively (p-value $< \alpha$), H_0 is rejected in favor of an alternative hypothesis, H_1 , at a level of significance of α .

17

Introduction Inferential Statistics

Experimental Design

Algorithms ⇒ Treatment Factor; Instances ⇒ Blocking Factor

Design A: One run on various instances (Unreplicated Factorial)

	Algorithm 1	Algorithm 2	 Algorithm k
Instance 1	X ₁₁	X ₁₂	X _{1k}
:	:	:	:
Instance b	X_{b1}	X _{b2}	X _{bk}

Design B: Several runs on various instances (Replicated Factorial)

	Algorithm 1	Algorithm 2	 Algorithm k
Instance 1	X_{111}, \ldots, X_{11r}	X_{121}, \ldots, X_{12r}	X_{1k1},\ldots,X_{1kr}
Instance 2	X_{211}, \ldots, X_{21r}	X_{221}, \ldots, X_{22r}	X_{2k1},\ldots,X_{2kr}
:	:	:	:
Instance b	X_{b11},\ldots,X_{b1r}	X_{b21},\ldots,X_{b2r}	X_{bk1}, \ldots, X_{bkr}

Preparation of the Experiments

Variance reduction techniques

• Same pseudo random seed

Sample Sizes

- If the sample size is large enough (infinity) any difference in the means of the factors, no matter how small, will be significant
- Real vs Statistical significance Study factors until the improvement in the response variable is deemed small
- ullet Desired statistical power + practical precision \Rightarrow sample size

Note: If resources available for N runs then the optimal design is one run on *N* instances [Birattari, 2004]

Introduction

Inferential Statistics Sequential Testing

Outline

- 3. Race: Sequential Testing

19

21

22

Sequential Testing

Unreplicated Designs

Procedure Race [Birattari 2002]: repeat

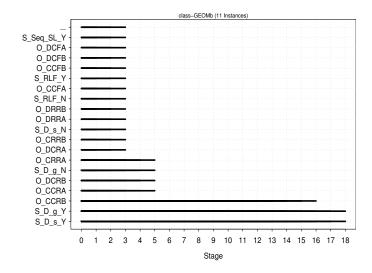
Randomly select an unseen instance and run all candidates on it

Perform all-pairwise comparison statistical tests

Drop all candidates that are significantly inferior to the best algorithm until only one candidate left or no more unseen instances;

- F-Race use Friedman test
- Holm adjustment method is typically the most powerful

```
stat.test=c(''friedman'',''t.bonferroni'',''t.holm'',''t.none'')
first.test=3
```



24