DM811

Heuristics for Combinatorial Optimization

Lecture 14
Race: A Configuration Tool

Marco Chiarandini

Department of Mathematics \& Computer Science University of Southern Denmark

Outline

1. Introduction
2. Inferential Statistics

Basics of Inferential Statistics
Experimental Designs

1. Introduction
2. Inferential Statistics Basics of Inferential Statistics Experimental Designs
3. Race: Sequential Testing

Outline

ntroduction
inferential Statistic
Inferential Statistic
Sequential Testing

[^0]
A Motivating Example

- There is a competition and two stochastic algorithms \mathcal{A}_{1} and \mathcal{A}_{2} are submitted.
- We run both algorithms once on n instances. On each instance either \mathcal{A}_{1} wins $(+)$ or \mathcal{A}_{2} wins (-) or they make a tie (=).

Questions:

1. If we have only 10 instances and algorithm \mathcal{A}_{1} wins 7 times how confident are we in claiming that algorithm \mathcal{A}_{1} is the best?
2. How many instances and how many wins should we observe to gain a confidence of 95% that the algorithm \mathcal{A}_{1} is the best?

A Motivating Example

- p : probability that \mathcal{A}_{1} wins on each instance $(+)$
- n : number of runs without ties
- Y : number of wins of algorithm \mathcal{A}_{1}

If each run is indepenedent and consitent:

$$
Y \sim B(n, p): \quad \operatorname{Pr}[Y=y]=\binom{n}{y} p^{y}(1-p)^{n-y}
$$

1 If we have only 10 instances and algorithm \mathcal{A}_{1} wins 7 times how confident are we in claiming that algorithm \mathcal{A}_{1} is the best?

Under these conditions, we can check how unlikely the situation is if it were $p(+) \leq p(-)$.
If $p=0.5$ then the chance that algorithm \mathcal{A}_{1} wins 7 or more times out of 10 is 17.2% : quite high!

ntroduction
 Inferential Statistics Sequential Testing

2 How many instances and how many wins should we observe to gain a confidence of 95% that the algorithm \mathcal{A}_{1} is the best?

To answer this question, we compute the 95% quantile, i.e., $y: \operatorname{Pr}[Y \geq y]<0.05$ with $p=0.5$ at different values of n :

n	10	11	12	13	14	15	16	17	18	19	20
y	9	9	10	10	11	12	12	13	13	14	15

This is an application example of sign test, a special case of binomial test in which $p=0.5$

General procedure:

- Assume that data are consistent with a null hypothesis H_{0} (e.g., sample data are drawn from distributions with the same mean value).
- Use a statistical test to compute how likely this is to be true, given the data collected. This "likely" is quantified as the p-value.
- Accept H_{0} as true if the p -value is larger than an user defined threshold called level of significance α.
- Alternatively (p -value $<\alpha$), H_{0} is rejected in favor of an alternative hypothesis, H_{1}, at a level of significance of α.

Experimental Design

Algorithms \Rightarrow Treatment Factor; Instances \Rightarrow Blocking Factor
Design A: One run on various instances (Unreplicated Factorial)

	Algorithm 1	Algorithm 2	\ldots	Algorithm k
Instance 1	X_{11}	X_{12}		$X_{1 k}$
\vdots	\vdots	\vdots		\vdots
Instance b	$X_{b 1}$	$X_{b 2}$		$X_{b k}$

Design B: Several runs on various instances (Replicated Factorial)

	Algorithm 1	Algorithm 2	\ldots	Algorithm \mathbf{k}
Instance 1	$X_{111}, \ldots, X_{11 r}$	$X_{121}, \ldots, X_{12 r}$		$X_{1 k 1}, \ldots, X_{1 k r}$
Instance 2	$X_{211}, \ldots, X_{21 r}$	$X_{221}, \ldots, X_{22 r}$		$X_{2 k 1}, \ldots, X_{2 k r}$
\vdots	\vdots	\vdots		\vdots
Instance b	$X_{b 11}, \ldots, X_{b 1 r}$	$X_{b 21}, \ldots, X_{b 2 r}$		$X_{b k 1}, \ldots, X_{b k r}$

Variance reduction techniques

- Same pseudo random seed

Sample Sizes

- If the sample size is large enough (infinity) any difference in the means of the factors, no matter how small, will be significant
- Real vs Statistical significance

Study factors until the improvement in the response variable is deemed small

- Desired statistical power + practical precision \Rightarrow sample size

Note: If resources available for N runs then the optimal design is one run on N instances [Birattari, 2004]
ntroduction nferential Statistics
Sequential Testing

1. Introduction
2. Inferential Statistics

Basics of Inferential Statistics

Experimental Designs
3. Race: Sequential Testing

Procedure Race [Birattari 2002]:

repeat
Randomly select an unseen instance and run all candidates on it
Perform all-pairwise comparison statistical tests
Drop all candidates that are significantly inferior to the best algorithm until only one candidate left or no more unseen instances;

- F-Race use Friedman test
- Holm adjustment method is typically the most powerful
stat.test=c('‘friedman', ,''t.bonferroni'',''t.holm'',''t.none'') first.test=3

[^0]: 1. Introduction
 2. Inferential Statistics Basics of Inferential Statistics Experimental Designs
