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Questions:

1. How good is the algorithm designed?
2. How hard, computationally, is a given a problem to solve

using the most efficient algorithm for that problem?

1. Asymptotic notation, running time bounds
Approximation theory

2. Complexity theory
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n ∈ N instance size

max time worst case T(n) = max{T(π) : π ∈ Πn}
average time average case T(n) = 1

|Πn|
{
∑
π T(π) : π ∈ Πn}

min time best case T(n) = min{T(π) : π ∈ Πn}

Growth rate or asymptotic analysis

f(n) and g(n) same growth rate if c ≤ f(n)
g(n) ≤ d for n large

f(n) grows faster than g(n) if f(n) ≥ c · g(n) for all c and n large

big O O(f) = {g(n) : ∃c > 0, ∀n > n0 : g(n) ≤ c · f(n)}
big omega Ω(f) = {g(n) : ∃c > 0, ∀n > n0 : g(n) ≥ c · f(n)}
theta Θ(f) = O(f) ∩Ω(f)

(little o o(f) = {g : g grows strictly more slowly})
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For asymptotic analysis we use RAM machine

sequential, single processor unit

all memory access take same amount of time

It is an abstraction from machine architecture: it ignores caches, memories
hierarchies, parallel processing (SIMD, multi-threading), etc.

Total execution of a program = total number of instructions executed

We are not interested in constant and lower order terms
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We express algorithms in natural language and mathematical notation, and in
pseudo-code, which is an abstraction from programming languages C, C++,
Java, etc.

(In implementation you can choose your favorite language)

Programs must be correct.
Certifying algorithm: computes a certificate for a post condition (without
increasing asymptotic running time)
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We say that an algorithm A is

Efficient = good = polynomial time = polytime
iff

there exists p(n) such that T(A) = O(p(n))

There are problems for which no polytime algorithm is known.
This course is about those problems.

Complexity theory classifies problems
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[Garey and Johnson, 1979]

Consider a Decision Search Problem Π:

Π is in P if ∃ algorithm A that finds a solution in polynomial time.

Π is in NP if ∃ verification algorithm A that verifies whether a binary
certificate is a solution to the problem in polynomial time.

a search problem Π ′ is (polynomially) reducible to Π (Π ′ −→ Π) if there
exists an algorithm A that solves Π ′ by using a hypothetical subroutine
S for Π and except for S everything runs in polynomial time.

Π is NP-complete if
1. it is in NP

2. there exists some NP-complete problem Π ′ that reduces to Π (Π ′ −→ Π)

If Π satisfies property 2, but not necessarily property 1, we say that it is
NP-hard:
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NP: Class of problems that can be solved in polynomial time by a
non-deterministic machine.
Note: non-deterministic 6= randomized;
non-deterministic machines are idealized models of computation that
have the ability to make perfect guesses.

NP-complete: Among the most difficult problems in NP; believed to
have at least exponential time-complexity for any realistic machine or
programming model.

NP-hard: At least as difficult as the most difficult problems in NP, but
possibly not in NP (i.e., may have even worse complexity than
NP-complete problems).
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Satisfiability problem in propositional logic

Definitions:

Formula in propositional logic: well-formed string that may contain
propositional variables x1, x2, . . . , xn;
truth values > (‘true’), ⊥ (‘false’);
operators ¬ (‘not’), ∧ (‘and’), ∨ (‘or’);
parentheses (for operator nesting).

Model (or satisfying assignment) of a formula F: Assignment of truth
values to the variables in F under which F becomes true (under the usual
interpretation of the logical operators)

Formula F is satisfiable iff there exists at least one model of F,
unsatisfiable otherwise.
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SAT Problem (decision problem, search variant):

Given: Formula F in propositional logic
Task: Find an assignment of truth values to variables in F that renders F
true, or decide that no such assignment exists.

SAT: A simple example

Given: Formula F := (x1 ∨ x2)∧ (¬x1 ∨ ¬x2)

Task: Find an assignment of truth values to variables x1, x2 that
renders F true, or decide that no such assignment exists.

17

Concepts from Algorithmics

Notation and runtime
Machine model
Pseudo-code
Computational Complexity
Analysis of Algorithms

Definitions:

A formula is in conjunctive normal form (CNF) iff it is of the form

m∧

i=1

ki∨

j=1

lij = (l11 ∨ . . .∨ l1k1
)∧ . . .∧ (lm1 ∨ . . .∨ lmkm

)

where each literal lij is a propositional variable or its negation. The
disjunctions ci = (li1 ∨ . . .∨ liki

) are called clauses.

A formula is in k-CNF iff it is in CNF and all clauses contain exactly k
literals (i.e., for all i, ki = k).

In many cases, the restriction of SAT to CNF formulae
is considered.
For every propositional formula, there is an equivalent formula in 3-CNF.
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Example:

F := ∧ (¬x2 ∨ x1)
∧ (¬x1 ∨ ¬x2 ∨ ¬x3)
∧ (x1 ∨ x2)
∧ (¬x4 ∨ x3)
∧ (¬x5 ∨ x3)

F is in CNF.
Is F satisfiable?
Yes, e.g., x1 := x2 := >, x3 := x4 := x5 := ⊥ is a model of F.

MAX-SAT (optimization problem)

Which is the maximal number of clauses satisfiable in a propositional logic
formula F?
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Many combinatorial problems are hard
but some problems can be solved efficiently

Longest path problem is NP-hard
but not shortest path problem

SAT for 3-CNF is NP-complete
but not 2-CNF (linear time algorithm)

Hamiltonian path is NP-complete
but not the Eulerian path problem

TSP on Euclidean instances is NP-hard
but not where all vertices lie on a circle.

21

Concepts from Algorithmics

Notation and runtime
Machine model
Pseudo-code
Computational Complexity
Analysis of Algorithms

An online compendium on the computational complexity
of optimization problems:
http://www.nada.kth.se/~viggo/problemlist/compendium.html
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Worst-case analysis (runtime and quality):
worst performance of algorithms over all possible instances

Probabilistic analysis (runtime):
average-case performance over a given probability distribution of
instances

Average-case (runtime):
overall possible instances for randomized algorithms

Asymptotic convergence results (quality)

Approximation of optimal solutions:
sometimes possible in polynomial time (e.g., Euclidean TSP),
but in many cases also intractable (e.g., general TSP);

Domination

Algorithm invariance
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Definition: Approximation Algorithms

An algorithm A is said to be a δ-approximation algorithm if it runs in
polynomial time and for every problem instance π with optimal solution value
OPT(π)

minimization: A(π)
OPT(π) ≤ δ δ ≥ 1

maximization: A(π)
OPT(π) ≥ δ δ ≤ 1

(δ is called worst case bound, worst case performance, approximation factor,
approximation ratio, performance bound, performance ratio, error ratio)
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Definition: Polynomial approximation scheme

A family of approximation algorithms for a problem Π, {Aε}ε, is called a
polynomial approximation scheme (PAS), if algorithm Aε is a
(1+ ε)-approximation algorithm and its running time is polynomial in the
size of the input for each fixed ε

Definition: Fully polynomial approximation scheme

A family of approximation algorithms for a problem Π, {Aε}ε, is called a fully
polynomial approximation scheme (FPAS), if algorithm Aε is a
(1+ ε)-approximation algorithm and its running time is polynomial in the
size of the input and 1/ε

26

Concepts from Algorithmics

Notation and runtime
Machine model
Pseudo-code
Computational Complexity
Analysis of AlgorithmsUseful Graph Algorithms

Breadth first, depth first search, traversal

Transitive closure

Topological sorting

(Strongly) connected components

Shortest Path

Minimum Spanning Tree

Matching
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Most often algorithms are randomized. Why?

possibility of gains from re-runs

adversary argument

structural simplicity for comparable average performance,

speed up,

avoiding loops in the search

...
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Definition: Randomized Algorithms

Their running time depends on the random choices made.
Hence, the running time is a random variable.

Las Vegas algorithm: it always gives the correct result but in random runtime
(with finite expected value).

Monte Carlo algorithm: the result is not guaranteed correct. Typically halted
due to bouned resources.
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In the case of randomized optimization heuristics
both solution quality and runtime are random variables.

We distinguish:

single-pass heuristics (denoted Aa): have an embedded termination, for
example, upon reaching a certain state
(generalized optimization Las Vegas algorithms [B2])

asymptotic heuristics (denoted A∞): do not have an embedded
termination and they might improve their solution asymptotically
(both probabilistically approximately complete
and essentially incomplete [B2])

30


