Concepts from Algorithmics

Outline

DM811 - Fall 2010

Heuristics for Combinatorial Optimization

Compendium]])
1. Basic Concepts from Algorithmics

Basic Concepts in Algorithmics : .
Notation and runtime
Machine model
. . Pseudo-code
Marco Chiarandini Computational Complexity
Analysis of Algorithms

Deptartment of Mathematics & Computer Science
University of Southern Denmark

2

Notation and runtime

Concepts from Algorithmics Concepts from Algorithmics

Outline Motivations

Questions:

,) , 1. How good is the algorithm designed?
1. Basic Concepts from Algorithmics]))
2. How hard, computationally, is a given a problem to solve

Notation and runtime _ . .
Machine model using the most efficient algorithm for that problem?

Pseudo-code
Compu'tatlonal C'ompIeX|ty 1. Asymptotic notation, running time bounds
Analysis of Algorithms .

Approximation theory

2. Complexity theory

Notation and runtime
Machine model

Concepts from Algorithmics Concepts from Algorithmics
Asymptotic notation Machine model
n € N instance size
max time worst case T(n) = max{T(m) : mell,}
average time average case T(n) = ﬁ{zﬁ-r(ﬂ) c e Ty} For asymptotic analysis we use RAM machine
min time best case T(n) = min{T(n) : 7 e Tn} @ sequential, single processor unit
Growth rate or asymptotic analysis @ all memory access take same amount of time
f(n) and g(n) same growth rate if ¢ < ;(TT:)) < d for 1 large It is an abstraction from machine architecture: it ignores caches, memories
f(n) grows faster than g(n) if f(n) > c - g(n) for all ¢ and n large hierarchies, parallel processing (SIMD, multi-threading), etc.
big O O(f) = {g(n) : Je > 0,¥n >no : g(n) < c-f(n)} Total execution of a program = total number of instructions executed
= : , : <
big omega Q(f) ={g(n) : I¢ >0,¥n >mno : g(n) > c-f(n)} We are not interested in constant and lower order terms
theta O(f) = O(f) N Q(f)
(little o o(f) ={g : g grows strictly more slowly})
6 8
Concepts from AlgorithmicsPseudo-code Concepts from AlgorithmicsPseudo-code
Pseudo-code Good Algorithms

We say that an algorithm A is

We express algorithms in natural language and mathematical notation, and in
pseudo-code, which is an abstraction from programming languages C, C++,

Java, etc. Efficient = good = polynomial time = polytime

iff

(In implementation you can choose your favorite language) there exists p(n) such that T(A) = O(p(n))

Programs must be correct.
Certifying algorithm: computes a certificate for a post condition (without

. . . . There are problems for which no polytime algorithm is known.
Increasing asymptotic running tlme)

This course is about those problems.

Complexity theory classifies problems

10 11

Polynomial vs. exponential growth

{Harel 2000) / SATISFIABILITY

10%
2w m— exponential

polynomial

mber of
7777777 micrgscconds
nce

107

1%

0%

1020 Bang
1015
A trillion- 7 Nurnhur of
microseconds
in one day

A billi : :
e + Linear Programming,
Shortest path, etc.

A million

1000}
100]
10

Concepts from Algorithmics

Computational Complexit:

@ NP: Class of problems that can be solved in polynomial time by a
non-deterministic machine.

Note: non-deterministic # randomized;
non-deterministic machines are idealized models of computation that
have the ability to make perfect guesses.

@ NP-complete: Among the most difficult problems in NP; believed to
have at least exponential time-complexity for any realistic machine or
programming model.

@ NP-hard: At least as difficult as the most difficult problems in NP, but
possibly not in NP (i.e., may have even worse complexity than
NP-complete problems).

15

Complexity Classes

[Garey and Johnson, 1979]

Consider a Decision Search Problem TT:

e ITis in P if 3 algorithm A that finds a solution in polynomial time.

T is in NP if 3 verification algorithm A that verifies whether a binary

Concepts from Algorithmics

certificate is a solution to the problem in polynomial time.

a search problem TT" is (polynomially) reducible to TT (TT" — TT) if there
exists an algorithm A that solves TT’ by using a hypothetical subroutine

S for TT and except for S everything runs in polynomial time.

IT is NP-complete if
1. itisin NP

2. there exists some NP-complete problem TT’ that reduces to TT (TT" — TT)

If TT satisfies property 2, but not necessarily property 1, we say that it is

NP-hard:

Computational Complexit;

SAT Problem

Satisfiability problem in propositional logic

Definitions:

e Formula in propositional logic: well-formed string that may contain

@ Model (or satisfying assignment) of a formula F: Assignment of truth
values to the variables in F under which F becomes true (under the usual
interpretation of the logical operators)

o Formula F is satisfiable iff there exists at least one model of F,

o propositional variables x1,x2,...,Xn;

o truth values T (‘true’), L (‘false’);

e operators — (‘not’), A (‘and’), VV (‘or’);
o parentheses (for operator nesting).

unsatisfiable otherwise.

Concepts from Algorithmics

14

Computational Complexit;

16

Concepts from Algorithmics

Computational Complexit:

SAT Problem (decision problem, search variant):
@ Given: Formula F in propositional logic

o Task: Find an assignment of truth values to variables in F that renders F
true, or decide that no such assignment exists.

SAT: A simple example
o Given: Formula F:= (x7 V x2) A\ (—x1 V —x3)

@ Task: Find an assignment of truth values to variables x7,x; that
renders F true, or decide that no such assignment exists.

Concepts from Algorithmics

Computational Complexit:

Example:

e Fisin CNF.

o Is F satisfiable?
Yes, e.g., X1 :=%2:= T, X3 := X4 := X5 := L is a model of F.

17

MAX-SAT (optimization problem)

Which is the maximal number of clauses satisfiable in a propositional logic
formula F?

19

Definitions:

Concepts from Algorithmics.
Computational Complexit;

@ A formula is in conjunctive normal form (CNF) iff it is of the form

~
£

L= Ve VI A A (g Ve Vg,
1

>3
I

—_

i=1j

where each literal 1;; is a propositional variable or its negation. The

disjunctions c¢; = (li1 V...V lik,) are called clauses.

o A formula is in k-CNF iff it is in CNF and all clauses contain exactly k
literals (i.e., for all i, ki = k).

NP-Completeness Proofs

@ In many cases, the restriction of SAT to CNF formulae
is considered.

o For every propositional formula, there is an equivalent formula in 3-CNF.

18

Concepts from Algorithmics.
Computational Complexit;

CIRCUIT-SAT

SAT

3-CNF-SAT

—— 1
SUBSET-SUM | |CLIQUE |

WVERTEX-COVER

HAM-CYCLE

20

Concepts from Algorithmics

Computational Complexit:

Many combinatorial problems are hard
but some problems can be solved efficiently

o Longest path problem is NP-hard
but not shortest path problem

o SAT for 3-CNF is NP-complete
but not 2-CNF (linear time algorithm)

@ Hamiltonian path is NP-complete
but not the Eulerian path problem

@ TSP on Euclidean instances is NP-hard
but not where all vertices lie on a circle.

21

Concepts from Algorithmics

Analysis of Algorithms

Theoretical Analysis

o Worst-case analysis (runtime and quality):
worst performance of algorithms over all possible instances

@ Probabilistic analysis (runtime):
average-case performance over a given probability distribution of
instances

@ Average-case (runtime):
overall possible instances for randomized algorithms

@ Asymptotic convergence results (quality)
@ Approximation of optimal solutions:
sometimes possible in polynomial time (e.g., Euclidean TSP),

but in many cases also intractable (e.g., general TSP);

@ Domination

24

Approximation Algorithms

Concepts from Algorithmics

Computational Complexit;

An online compendium on the computational complexity
of optimization problems:
http://www.nada.kth.se/ viggo/problemlist/compendium.html

22

Concepts from Algorithmics

Analysis of Algorithms

Definition: Approximation Algorithms

An algorithm A is said to be a d-approximation algorithm if it runs in
polynomial time and for every problem instance 7t with optimal solution value

OPT(mn)

minimization: % <6 6>1
maximization: O“é(ﬁl[) >85 56<1

(8 is called worst case bound, worst case performance, approximation factor,
approximation ratio, performance bound, performance ratio, error ratio)

25

Concepts from Algorithmics Concepts from Algorithmics

Approximation Algorithms anaivsisof aizoriehms | Jseful Graph Algorithms Analysis of Algerithms

Definition: Polynomial approximation scheme @ Breadth first, depth first search, traversal
A family of approximation algorithms for a problem TT, { A}, is called a N
polynomial approximation scheme (PAS), if algorithm A is a o Transitive closure
(1 + €)-approximation algorithm and its running time is polynomial in the
size of the input for each fixed € @ Topological sorting
o (Strongly) connected components
Definition: Fully polynomial approximation scheme
A family of approximation algorithms for a problem TT, {A¢}¢, is called a fully ® Shortest Path
polynomial approximation scheme (FPAS), if algorithm A, is a . .
(1 + €)-approximation algorithm and its running time is polynomial in the ® Minimum Spanning Tree
size of the input and 1/¢
o Matching
26 27
Concepts from Algorithmics Concepts from Algorithmics
Randomized Algorithms ansbyss ot alioriims Randomized Algorithms Anelyse o Algerithme

. : 2
Most often algorithms are randomized. Why? Definition: Randomized Algorithms

possibility of gains from re-runs Their running time depends on the random choices made.
Hence, the running time is a random variable.

(]

@ adversary argument
o structural simplicity for comparable average performance, Las Vegas algorithm: it always gives the correct result but in random runtime
(with finite expected value).
@ speed up,
Monte Carlo algorithm: the result is not guaranteed correct. Typically halted
o avoiding loops in the search due to bouned resources.
o .

28 29

Concepts from Algorithmics

Randomized Heuristics Analysis of Aliorithms

In the case of randomized optimization heuristics
both solution quality and runtime are random variables.

We distinguish:

@ single-pass heuristics (denoted .A™): have an embedded termination, for
example, upon reaching a certain state
(generalized optimization Las Vegas algorithms [B2])

@ asymptotic heuristics (denoted .4°°): do not have an embedded
termination and they might improve their solution asymptotically
(both probabilistically approximately complete
and essentially incomplete [B2])

30

