
DM811 – Fall 2010

Heuristics for Combinatorial Optimization

Compendium
Basic Concepts in Algorithmics

Marco Chiarandini

Deptartment of Mathematics & Computer Science
University of Southern Denmark

Concepts from Algorithmics

Outline

1. Basic Concepts from Algorithmics
Notation and runtime
Machine model
Pseudo-code
Computational Complexity
Analysis of Algorithms

2

Concepts from Algorithmics

Notation and runtime
Machine model
Pseudo-code
Computational Complexity
Analysis of AlgorithmsOutline

1. Basic Concepts from Algorithmics
Notation and runtime
Machine model
Pseudo-code
Computational Complexity
Analysis of Algorithms

3

Concepts from Algorithmics

Notation and runtime
Machine model
Pseudo-code
Computational Complexity
Analysis of AlgorithmsMotivations

Questions:

1. How good is the algorithm designed?
2. How hard, computationally, is a given a problem to solve

using the most efficient algorithm for that problem?

1. Asymptotic notation, running time bounds
Approximation theory

2. Complexity theory

5

Concepts from Algorithmics

Notation and runtime
Machine model
Pseudo-code
Computational Complexity
Analysis of AlgorithmsAsymptotic notation

n ∈ N instance size

max time worst case T(n) = max{T(π) : π ∈ Πn}
average time average case T(n) = 1

|Πn|
{
∑
π T(π) : π ∈ Πn}

min time best case T(n) = min{T(π) : π ∈ Πn}

Growth rate or asymptotic analysis

f(n) and g(n) same growth rate if c ≤ f(n)
g(n) ≤ d for n large

f(n) grows faster than g(n) if f(n) ≥ c · g(n) for all c and n large

big O O(f) = {g(n) : ∃c > 0, ∀n > n0 : g(n) ≤ c · f(n)}
big omega Ω(f) = {g(n) : ∃c > 0, ∀n > n0 : g(n) ≥ c · f(n)}
theta Θ(f) = O(f) ∩Ω(f)

(little o o(f) = {g : g grows strictly more slowly})

6

Concepts from Algorithmics

Notation and runtime
Machine model
Pseudo-code
Computational Complexity
Analysis of AlgorithmsMachine model

For asymptotic analysis we use RAM machine

sequential, single processor unit

all memory access take same amount of time

It is an abstraction from machine architecture: it ignores caches, memories
hierarchies, parallel processing (SIMD, multi-threading), etc.

Total execution of a program = total number of instructions executed

We are not interested in constant and lower order terms

8

Concepts from Algorithmics

Notation and runtime
Machine model
Pseudo-code
Computational Complexity
Analysis of AlgorithmsPseudo-code

We express algorithms in natural language and mathematical notation, and in
pseudo-code, which is an abstraction from programming languages C, C++,
Java, etc.

(In implementation you can choose your favorite language)

Programs must be correct.
Certifying algorithm: computes a certificate for a post condition (without
increasing asymptotic running time)

10

Concepts from Algorithmics

Notation and runtime
Machine model
Pseudo-code
Computational Complexity
Analysis of AlgorithmsGood Algorithms

We say that an algorithm A is

Efficient = good = polynomial time = polytime
iff

there exists p(n) such that T(A) = O(p(n))

There are problems for which no polytime algorithm is known.
This course is about those problems.

Complexity theory classifies problems

11

Concepts from Algorithmics

Notation and runtime
Machine model
Pseudo-code
Computational Complexity
Analysis of AlgorithmsComplexity Classes

[Garey and Johnson, 1979]

Consider a Decision Search Problem Π:

Π is in P if ∃ algorithm A that finds a solution in polynomial time.

Π is in NP if ∃ verification algorithm A that verifies whether a binary
certificate is a solution to the problem in polynomial time.

a search problem Π ′ is (polynomially) reducible to Π (Π ′ −→ Π) if there
exists an algorithm A that solves Π ′ by using a hypothetical subroutine
S for Π and except for S everything runs in polynomial time.

Π is NP-complete if
1. it is in NP

2. there exists some NP-complete problem Π ′ that reduces to Π (Π ′ −→ Π)

If Π satisfies property 2, but not necessarily property 1, we say that it is
NP-hard:

14

Concepts from Algorithmics

Notation and runtime
Machine model
Pseudo-code
Computational Complexity
Analysis of Algorithms

NP: Class of problems that can be solved in polynomial time by a
non-deterministic machine.
Note: non-deterministic 6= randomized;
non-deterministic machines are idealized models of computation that
have the ability to make perfect guesses.

NP-complete: Among the most difficult problems in NP; believed to
have at least exponential time-complexity for any realistic machine or
programming model.

NP-hard: At least as difficult as the most difficult problems in NP, but
possibly not in NP (i.e., may have even worse complexity than
NP-complete problems).

15

Concepts from Algorithmics

Notation and runtime
Machine model
Pseudo-code
Computational Complexity
Analysis of AlgorithmsSAT Problem

Satisfiability problem in propositional logic

Definitions:

Formula in propositional logic: well-formed string that may contain
propositional variables x1, x2, . . . , xn;
truth values > (‘true’), ⊥ (‘false’);
operators ¬ (‘not’), ∧ (‘and’), ∨ (‘or’);
parentheses (for operator nesting).

Model (or satisfying assignment) of a formula F: Assignment of truth
values to the variables in F under which F becomes true (under the usual
interpretation of the logical operators)

Formula F is satisfiable iff there exists at least one model of F,
unsatisfiable otherwise.

16

Concepts from Algorithmics

Notation and runtime
Machine model
Pseudo-code
Computational Complexity
Analysis of Algorithms

SAT Problem (decision problem, search variant):

Given: Formula F in propositional logic
Task: Find an assignment of truth values to variables in F that renders F
true, or decide that no such assignment exists.

SAT: A simple example

Given: Formula F := (x1 ∨ x2)∧ (¬x1 ∨ ¬x2)

Task: Find an assignment of truth values to variables x1, x2 that
renders F true, or decide that no such assignment exists.

17

Concepts from Algorithmics

Notation and runtime
Machine model
Pseudo-code
Computational Complexity
Analysis of Algorithms

Definitions:

A formula is in conjunctive normal form (CNF) iff it is of the form

m∧

i=1

ki∨

j=1

lij = (l11 ∨ . . .∨ l1k1
)∧ . . .∧ (lm1 ∨ . . .∨ lmkm

)

where each literal lij is a propositional variable or its negation. The
disjunctions ci = (li1 ∨ . . .∨ liki

) are called clauses.

A formula is in k-CNF iff it is in CNF and all clauses contain exactly k
literals (i.e., for all i, ki = k).

In many cases, the restriction of SAT to CNF formulae
is considered.
For every propositional formula, there is an equivalent formula in 3-CNF.

18

Concepts from Algorithmics

Notation and runtime
Machine model
Pseudo-code
Computational Complexity
Analysis of Algorithms

Example:

F := ∧ (¬x2 ∨ x1)
∧ (¬x1 ∨ ¬x2 ∨ ¬x3)
∧ (x1 ∨ x2)
∧ (¬x4 ∨ x3)
∧ (¬x5 ∨ x3)

F is in CNF.
Is F satisfiable?
Yes, e.g., x1 := x2 := >, x3 := x4 := x5 := ⊥ is a model of F.

MAX-SAT (optimization problem)

Which is the maximal number of clauses satisfiable in a propositional logic
formula F?

19

Concepts from Algorithmics

Notation and runtime
Machine model
Pseudo-code
Computational Complexity
Analysis of AlgorithmsNP-Completeness Proofs

20

Concepts from Algorithmics

Notation and runtime
Machine model
Pseudo-code
Computational Complexity
Analysis of Algorithms

Many combinatorial problems are hard
but some problems can be solved efficiently

Longest path problem is NP-hard
but not shortest path problem

SAT for 3-CNF is NP-complete
but not 2-CNF (linear time algorithm)

Hamiltonian path is NP-complete
but not the Eulerian path problem

TSP on Euclidean instances is NP-hard
but not where all vertices lie on a circle.

21

Concepts from Algorithmics

Notation and runtime
Machine model
Pseudo-code
Computational Complexity
Analysis of Algorithms

An online compendium on the computational complexity
of optimization problems:
http://www.nada.kth.se/~viggo/problemlist/compendium.html

22

Concepts from Algorithmics

Notation and runtime
Machine model
Pseudo-code
Computational Complexity
Analysis of AlgorithmsTheoretical Analysis

Worst-case analysis (runtime and quality):
worst performance of algorithms over all possible instances

Probabilistic analysis (runtime):
average-case performance over a given probability distribution of
instances

Average-case (runtime):
overall possible instances for randomized algorithms

Asymptotic convergence results (quality)

Approximation of optimal solutions:
sometimes possible in polynomial time (e.g., Euclidean TSP),
but in many cases also intractable (e.g., general TSP);

Domination

Algorithm invariance

24

Concepts from Algorithmics

Notation and runtime
Machine model
Pseudo-code
Computational Complexity
Analysis of AlgorithmsApproximation Algorithms

Definition: Approximation Algorithms

An algorithm A is said to be a δ-approximation algorithm if it runs in
polynomial time and for every problem instance π with optimal solution value
OPT(π)

minimization: A(π)
OPT(π) ≤ δ δ ≥ 1

maximization: A(π)
OPT(π) ≥ δ δ ≤ 1

(δ is called worst case bound, worst case performance, approximation factor,
approximation ratio, performance bound, performance ratio, error ratio)

25

Concepts from Algorithmics

Notation and runtime
Machine model
Pseudo-code
Computational Complexity
Analysis of AlgorithmsApproximation Algorithms

Definition: Polynomial approximation scheme

A family of approximation algorithms for a problem Π, {Aε}ε, is called a
polynomial approximation scheme (PAS), if algorithm Aε is a
(1+ ε)-approximation algorithm and its running time is polynomial in the
size of the input for each fixed ε

Definition: Fully polynomial approximation scheme

A family of approximation algorithms for a problem Π, {Aε}ε, is called a fully
polynomial approximation scheme (FPAS), if algorithm Aε is a
(1+ ε)-approximation algorithm and its running time is polynomial in the
size of the input and 1/ε

26

Concepts from Algorithmics

Notation and runtime
Machine model
Pseudo-code
Computational Complexity
Analysis of AlgorithmsUseful Graph Algorithms

Breadth first, depth first search, traversal

Transitive closure

Topological sorting

(Strongly) connected components

Shortest Path

Minimum Spanning Tree

Matching

27

Concepts from Algorithmics

Notation and runtime
Machine model
Pseudo-code
Computational Complexity
Analysis of AlgorithmsRandomized Algorithms

Most often algorithms are randomized. Why?

possibility of gains from re-runs

adversary argument

structural simplicity for comparable average performance,

speed up,

avoiding loops in the search

...

28

Concepts from Algorithmics

Notation and runtime
Machine model
Pseudo-code
Computational Complexity
Analysis of AlgorithmsRandomized Algorithms

Definition: Randomized Algorithms

Their running time depends on the random choices made.
Hence, the running time is a random variable.

Las Vegas algorithm: it always gives the correct result but in random runtime
(with finite expected value).

Monte Carlo algorithm: the result is not guaranteed correct. Typically halted
due to bouned resources.

29

Concepts from Algorithmics

Notation and runtime
Machine model
Pseudo-code
Computational Complexity
Analysis of AlgorithmsRandomized Heuristics

In the case of randomized optimization heuristics
both solution quality and runtime are random variables.

We distinguish:

single-pass heuristics (denoted Aa): have an embedded termination, for
example, upon reaching a certain state
(generalized optimization Las Vegas algorithms [B2])

asymptotic heuristics (denoted A∞): do not have an embedded
termination and they might improve their solution asymptotically
(both probabilistically approximately complete
and essentially incomplete [B2])

30

