
DM811

Heuristics for Combinatorial Optimization

Lecture 2
Introductory Topics

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Outline

1. Problem Solving
Psychological Perspective

2. Generalities on Heuristics
Constraint Satisfaction Problem
Construction Heuristics
Local Search

3. Software Tools
Constraint-Based Local Search with CometTM

4. Basic Concepts from Algorithmics
Graphs

2

Outline

1. Problem Solving
Psychological Perspective

2. Generalities on Heuristics
Constraint Satisfaction Problem
Construction Heuristics
Local Search

3. Software Tools
Constraint-Based Local Search with CometTM

4. Basic Concepts from Algorithmics
Graphs

3

Problem Solving

Problem solving is a mental process considered the most complex of all
intellectual functions.

Move from a given state to a desired goal state using the knowledge we have
but “inquiring in what we do not know” (Plato).
Often solutions seem to be original and creative.

Theories:
1. Gestalt approach
2. Problem space theory (Information-processing theory)

5

Gestalt Approach

The process of problem solving is

Behaviourists: reproduction of known responses, trial and error process

Gestalt school: (German psychologists in 20-30’s concerned with experience
as a whole rather than composed of parts)

reproductive: draws on previous experience
(may cause fixation and hinder the solution)
productive: insight and problem restructuring

6

Gestalt Approach

Maier’s Experiment (1931): pendulum problem

Those who solved it rarely
reported the clue

Unconscious clue can lead to
problem restructuring and insight

Criticism:

unspecified and vague

descriptive nature, not normative
or explanatory (what processes
are involved?)

7

Representational Theory

Incorporate Gestalt ideas into a working theory [Ohlsson, 1992]

A problem is represented in a certain way in the person’s mind and this
serves as a source of information from long-term memory
The retrieval process spreads activation over relevant long term memory
items
A block occurs if the way a problem is represented does not lead to a
helpful memory search
The way the problem is represented changes and the memory search is
extended, making new information available
Representational change can occur due to elaboration (addition of new
information) constraint relaxation (rules are reinterpreted) or re-encoding
(fixedness is removed)
Insight occurs when a block is broken and retrieved knowledge results in
solution

8

Representational Theory

Draw four straight lines to join all the dots without taking the pen off the
page

This problem was given to
employees at Disney as is
reportedly the origin of the
expression “thinking outside
the box”

Who failed probably did not
consider extending the lines
beyond the grid
è Constraint relaxation

9

Problem Space Approach

Information-processing theory:

[A. Newell and H.A. Simon. Computer science as empirical inquiry:
symbols and search. Communications of the ACM, 1976]

human mind as symbolic system.

generating problems states in the problem space using
legal transition operators to go from an initial state to a
goal state.

limitations imposed by human processing system
(limited short-term memory and speed).

maximization heuristic: reduce difference between initial
and goal state.

progress monitoring: assessment of rate of progress

10

Further Elements

Experience helps us since we can learn how to structure problems space
and appropriate operators.

Analogy (old knowledge is used to solve new problems)

Domain knowledge and skill acquisition

Observation of expert vs novice in chess
chess masters remember board configurations
structure available to maintain configurations in short term memory
grouping of problems according to underlying conceptual similarities
better encoding of knowledge and easier information retrieval

skill acquisition:
general-purpose rules
rules to specific task
rules are tuned to speed up

11

Further reading:

A. Newell and H.A. Simon. Computer science as empirical inquiry:
symbols and search. Communications of the ACM, ACM, 1976, 19(3),
113-126

A. Dix, J. Finlay, G.D. Abowd and R. Beale. Human-Computer
Interaction. Pearson, Prentice Hall, 2004. (Chapter 1)

Ormerod, T. MacGregor, J. Chronicle, E. (2002) Dynamics and
Constraints in Insight Problem Solving. Journal of Experimental
Psychology: Learning, Memory, and Cognition vol. 28 (4) pp 791-799

12

Outline

1. Problem Solving
Psychological Perspective

2. Generalities on Heuristics
Constraint Satisfaction Problem
Construction Heuristics
Local Search

3. Software Tools
Constraint-Based Local Search with CometTM

4. Basic Concepts from Algorithmics
Graphs

13

Constraint Satisfaction Problem

Input:

a set of variables X1, X2, . . . , Xn

each variable has a non-empty domain Di of possible values

a set of constraints. Each constraint Ci involves some subset of the
variables and specifies the allowed combination of values for that subset.

[A constraint C on variables Xi and Xj , C(Xi, Xj), defines the subset of
the Cartesian product of variable domains Di ×Dj of the consistent
assignments of values to variables. A constraint C on variables Xi, Xj is
satisfied by a pair of values vi, vj if (vi, vj) ∈ C(Xi, Xj).]

Task:

find an assignment of values to all the variables {Xi = vi, Xj = vj , . . .}
such that it is consistent, that is, it does not violate any constraint

If assignments are not all equally good but some are preferable this is
reflected in an objective function.

15

Construction Heuristics

Construction heuristics

(aka, single pass heuristics or dispatching rules in scheduling)
They are closely related to tree search techniques but correspond to a single
path from root to leaf

search space = partial candidate solutions
search step = extension with one or more solution components

Construction Heuristic (CH):
s := ∅
while s is not a complete solution do

choose a solution component (Xi = vj)
add the solution component to s

17

Designing Constr. Heuristics

Which variable should we assign next,
and in what order should its values be tried?

Select-Unassigned-Variable

Static: Degree heuristic (reduces the branching factor) also used as tie
breaker

Dynamic: Most constrained variable = Fail-first heuristic = Minimum
remaining values heuristic

Order-Domain-Values
eg, least-constraining-value heuristic (leaves maximum flexibility for
subsequent variable assignments)

18

Designing Constr. Heuristics

Ideas for variable selection
with smallest min value
with largest min value
with smallest max value
with largest max value

with smallest domain size
with largest domain size

The degree of a variable is defined as the number of constraints it is
involved in.

with smallest degree. In case of ties, variable with smallest domain.
with largest degree. In case of ties, variable with smallest domain.
with smallest domain size divided by degree
with largest domain size divided by degree

The min-regret of a variable is the difference between the smallest and
second-smallest value still in the domain.

with smallest min-regret: i = argmin ∆f
(2)
i −∆f

(1)
i

with largest min-regret: i = argmax ∆f
(2)
i −∆f

(1)
i

with smallest max-regret: i = argmin ∆f
(n)
i −∆f

(1)
i

with largest max-regret: i = argmax ∆f
(n)
i −∆f

(1)
i

19

Designing Constr. Heuristics

Ideas for value selection
Select smallest value
Select median value
Select maximal value

Look-ahead:
Select value that leaves the largest number of feasible values at to the
other variables
Select value that leaves the smallest number of feasible values at to the
other variables (fail early)

20

Greedy best-first search

21

Sometimes greedy heuristics can be proved to be optimal
minimum spanning tree,
single source shortest path,
total weighted sum completion time in single machine scheduling,
single machine maximum lateness scheduling

Other times an approximation ratio can be proved

22

Local Search Paradigm

search space = complete candidate solutions
search step = modification of one or more solution components

neighborhood candidate solutions in the search space reachable in a step

iteratively generate and evaluate candidate solutions
decision problems: evaluation = test if solution
optimization problems: evaluation = check objective function value

Iterative Improvement (II):
determine initial candidate solution s
while s has better neighbors do

choose a neighbor s′ of s such that f(s′) < f(s)
s := s′

24

Local Search Algorithm

Basic Components (given problem instance π):

search space (solution representation) S(π)

initialization function init : ∅ 7→ P(S(π))

neighborhood relation N (π) ⊆ S(π)× S(π)
(determines the move operator)

evaluation function f(π) : S 7→ R

25

Outline

1. Problem Solving
Psychological Perspective

2. Generalities on Heuristics
Constraint Satisfaction Problem
Construction Heuristics
Local Search

3. Software Tools
Constraint-Based Local Search with CometTM

4. Basic Concepts from Algorithmics
Graphs

26

Software Tools

Modeling languages
interpreted languages with a precise syntax and semantics

Software libraries
collections of subprograms used to develop software

Software frameworks
set of abstract classes and their interactions

frozen spots (remain unchanged in any instantiation of the framework)

hot spots (parts where programmers add their own code)

27

Software Tools

No well established software tool for Local Search:

the apparent simplicity of Local Search induces to build applications
from scratch.

crucial roles played by delta/incremental updates which is problem
dependent

the development of Local Search is in part a craft,
beside engineering and science.

lack of a unified view of Local Search.

28

Software Tools

EasyLocal++ C++, Java Local Search
ParadisEO C++ Local Search, Evolutionary Algorithm
OpenTS Java Tabu Search
Comet – Language

EasyLocal++ http://tabu.diegm.uniud.it/EasyLocal++/
ParadisEO http://paradiseo.gforge.inria.fr
OpenTS http://www.coin-or.org/Ots
Comet http://dynadec.com/

29

Comet is

A programming language

Syntax inspired by C++
Object-oriented
Operator overloading
Filestreams

Interpreted or Just-in-Time compiled
Garbage collection
High-level features

Invariants (one-way-constraints)
Closures
Functional programming-like constructions

List comprehension
sum, select, selectMin, selectMax

Sets, dictionaries, etc. are builtin types
Events

35

Comet is

A runtime environment
With integrated optimization solvers

Constraint-Based Local Search
Constraint Programming
Linear Programming (COIN-OR CLP)
Mixed Integer Programming

2D graphics library
Available for many platforms

Mac OS X (32 and 64 bit)
Windows
Linux (32 and 64 bit)

Ubuntu
SuSE
RedHat/Fedora

36

Comet is

Unfortunately not Open Source

Maintained and owned by Pascal Van Hentenryck (Brown University),
Laurent Michel (University of Connecticut), Dynadec.

In active development

Syntax is changing (faster than the documentation)
Small bugs will be fixed fast
Large bugs will be fixed
Feature requests are always considered

37

Constraint Programming is

Model
Variables

Domains

Objective Function
Constraints

Search
Branching

Variable selection
Value selection

Search strategy
BFS
DFS
LDS

38

Constraint-Based Local Search is

Model
Incremental variables
Invariants
Differentiable objects

Functions
Constraints
Constraint Systems

Search
Local Search

Iterative Improvement
Tabu Search
Simulated Annealing
Guided Local Search

39

Incremental variables

var{int}, var{float}, var{bool}, var{set{int}}, ...

Attached to a model object
Has a domain
Has a value

Examples
Solver<LS> m();

var{int} x(m, 1..100);
var{bool} b[1..7](m);
var{set{int}} S(m);

x := 7;
S := {1,3,6,8};

40

Invariants

var <- expr
Also known as one-way constraints
Defined over incremental variables
Implicitly attached to a model object
LHS variable value is maintained incrementally under changes to RHS
variable values
Can be user defined (by implementing Invariant<LS>)

Examples
var{int} x(m) := 7
var{int} y(m) <- (x+5)*x;
x <- y; // not allowed!!!
y := 3; // not allowed!!!
var{int} c[i in 1..n](m) := (i % 6);
var{int} C(m) <- sum(i in 1..n)(c[i]);
var{set{int}} Z(m) <- collect(i in n : c[i] == 0)(i);
var{int} q(m) <- c[x];

41

Diffentiable objects

Constraint<LS>

ConstraintSystem<LS>

Function<LS>

Defined over incremental variables
Implicitly attached to a model object
Has a value (or a number of violations)
Maintains value incrementally under changes to variable values
Supports delta evaluations
Can be user defined (by extending UserConstraint<LS>)

42

Constraint<LS>

Interface
int getAssignDelta(var{int},int)
int getAssignDelta(var{int}[],int[])
int getSwapDelta(var{int},var{int})
var{int}[] getVariables()
var{boolean} isTrue()
var{int} violations()
var{int} violations(var{int})

43

ConstraintSystem<LS> extends Constraint<LS>

A conjunction of constraints

Interface
Constraint<LS> post(expr{boolean})
Constraint<LS> post(expr{boolean},int)
Constraint<LS> post(Constraint<LS>)
Constraint<LS> post(Constraint<LS>,int)
Constraint<LS> satisfy(expr{boolean})
Constraint<LS> satisfy(expr{boolean},int)
Constraint<LS> satisfy(Constraint<LS>)
Constraint<LS> satisfy(Constraint<LS>,int)

44

ConstraintSystem<LS> extends Constraint<LS>

Examples
Solver<LS> m();
var{int} x[1..10](m);
var{int} y[1..10](m, 1..2);
int w[i in 1..10] = 2*i;
int C[1..2] = 95;

ConstraintSystem<LS> S(m);
S.post(x[1] >= 7);
S.post(sum(i in 3..7)(x[i]*x[i] <= x[10]);
S.post(AllDifferent<LS>(x));
S.post(Knapsack<LS>(y, w, C));

45

Function<LS>

Interface
int getAssignDelta(var{int},int)
int getSwapDelta(var{int},var{int})
var{int} flipDelta(var{boolean})
var{int} evaluation()
var{int} value()
var{int}[] getVariables()
var{int} increase(var{int})
var{int} decrease(var{int})

46

Function<LS>

Examples
Solver<LS> m();

var{int} x(m, 1..10);

FunctionWrapper<LS> f1(x[1]*(7-x[2]);
FunctionWrapper<LS> f2(x[5]);
FunctionPower<LS> f3(f2, 3);
FunctionTimes<LS> f4(f2, f3);
FunctionSum<LS> f5(m);
F.post(f1);
F.post(f2);
F.post(f3, 17);
F.post(x[10]-10);
F.close();
MinNbDistinct<LS> f6(x);

47

Overview

48

How to learn more

Comet Tutorial
in the Comet distribution

Constraint-Based Local Search
P. Van Hentenryck, L. Michel
MIT Press, 2005
ISBN-10: 0-262-22077-6

Implement, experiment, fail, think, try again!
See: http://www.imada.sdu.dk/ marco/Teaching/-
Fall2010/DM811/resources.html
Ask: http://forums.dynadec.com

49

Outline

1. Problem Solving
Psychological Perspective

2. Generalities on Heuristics
Constraint Satisfaction Problem
Construction Heuristics
Local Search

3. Software Tools
Constraint-Based Local Search with CometTM

4. Basic Concepts from Algorithmics
Graphs

50

Graphs

Graphs are combinatorial structures useful to model several applications

Terminology:

G = (V,E), E ⊆ V × V , vertices, edges, n = |V |,m = |E|, digraphs,
undirected graphs, subgraph, induced subgraph
e = (u, v) ∈ E, e incident on u and v; u, v adjacent, edge weight or cost
particular cases often omitted: self-loops, multiple parallel edges
degree, δ, ∆, outdegree, indegree
path P =< v0, v1, . . . , vk >, (v0, v1) ∈ E, . . . , (vk−1, vk) ∈ E,
< v0, v1 > has length 2, < v0, v1, v2, v0 > cycle, walk, path
directed acyclic digraph
digraph strongly connected (∀u, v ∃(uv)-path), strongly connected
components
G is a tree (∃ path between any two vertices) ⇐⇒ G is connected and
has n− 1 edges ⇐⇒ G is connected and contains no cycles.
parent, children, sibling, height, depth

52

Representing Graphs

Operations:

Access associated information (NodeArray, EdgeArray, Hashes)
Navigation: access outgoing edges
Edge queries: given u and v is there an edge?
Update: add remove edges, vertices

Data Structures:

Edge sequences

Adjacency arrays

Adjacency lists

Adjacency matrix

How to choose?

it depends on the graphs and the
application
if time and space not crucial no need to
customize the structures
use interfaces that make easy to change
the data structure
libraries offer different choices (LEDA,
Java jdsl.graph)

53

Summary

(Graphs)

Constraint Satisfaction Probelm

Construction Heuristics and Local Search

Working environment organization

Comet

54

Outlook

How to analyse results

Short introduction to R

55

