
DM811

Heuristics for Combinatorial Optimization

Lecture 5
Metaheuristics based on Construction Heuristics

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Outline
Metaheuristics
Work Environment
Bin PackingOutline

1. Metaheuristics
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP
Adaptive Iterated Construction Search
Multilevel Refinement

2. Work Environment
Organization

3. Bin Packing

2

Outline
Metaheuristics
Work Environment
Bin Packing

Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP
Adaptive Iterated Construction Search
Multilevel RefinementOutline

1. Metaheuristics
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP
Adaptive Iterated Construction Search
Multilevel Refinement

2. Work Environment
Organization

3. Bin Packing

3

Outline
Metaheuristics
Work Environment
Bin Packing

Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP
Adaptive Iterated Construction Search
Multilevel RefinementMetaheuristics

On backtracking framework
(beyond best-first search)

Bounded backtrack

Credit-based search

Limited Discrepancy Search

Barrier Search

Randomization in Tree Search

Outside the exact framework
(beyond greedy search)

Rollout/Pilot Method

Beam Search

Iterated Greedy

GRASP

Adaptive Iterated Construction
Search

Multilevel Refinement

4

Outline
Metaheuristics
Work Environment
Bin Packing

Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP
Adaptive Iterated Construction Search
Multilevel RefinementRollout/Pilot Method

Derived from A∗

Each candidate solution is a collection of m components
S = (s1, s2, . . . , sm).
Master process adds components sequentially to a partial solution
Sk = (s1, s2, . . . sk)

At the k-th iteration the master process evaluates feasible components
to add based on an heuristic look-ahead strategy.
The evaluation function H(Sk+1) is determined by sub-heuristics that
complete the solution starting from Sk
Sub-heuristics are combined in H(Sk+1) by

weighted sum
minimal value

6

Outline
Metaheuristics
Work Environment
Bin Packing

Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP
Adaptive Iterated Construction Search
Multilevel Refinement

Speed-ups:

halt whenever cost of current partial solution exceeds current upper
bound
evaluate only a fraction of possible components

7

Outline
Metaheuristics
Work Environment
Bin Packing

Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP
Adaptive Iterated Construction Search
Multilevel RefinementBeam Search

Again based on tree search:
maintain a set B of bw (beam width) partial candidate solutions

at each iteration extend each solution from B in fw (filter width)
possible ways

rank each bw × fw candidate solutions and take the best bw partial
solutions

complete candidate solutions obtained by B are maintained in Bf

Stop when no partial solution in B is to be extended

9

Outline
Metaheuristics
Work Environment
Bin Packing

Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP
Adaptive Iterated Construction Search
Multilevel RefinementIterated Greedy

Key idea: use greedy construction

alternation of construction and deconstruction phases
an acceptance criterion decides whether the search continues from the
new or from the old solution.

Iterated Greedy (IG):
determine initial candidate solution s
while termination criterion is not satisfied do

r := s
(randomly or heuristically) destruct part of s
greedily reconstruct the missing part of s
based on acceptance criterion,

keep s or revert to s := r

11

Outline
Metaheuristics
Work Environment
Bin Packing

Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP
Adaptive Iterated Construction Search
Multilevel RefinementExtension: Squeaky Wheel

Key idea: solutions can reveal problem structure which maybe worth to
exploit.

Use a greedy heuristic repeatedly by prioritizing the elements that create
troubles.

Squeaky Wheel
Constructor: greedy algorithm on a sequence of problem elements.
Analyzer: assign a penalty to problem elements that contribute to flaws
in the current solution.
Prioritizer: uses the penalties to modify the previous sequence of problem
elements. Elements with high penalty are moved toward the front.

Possible to include a local search phase between one iteration and the other

12

Outline
Metaheuristics
Work Environment
Bin Packing

Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP
Adaptive Iterated Construction Search
Multilevel RefinementGRASP

Greedy Randomized Adaptive Search Procedure

Key Idea: Combine randomized constructive search with subsequent local
search.

Motivation:

Candidate solutions obtained from construction heuristics can often be
substantially improved by local search.

Local search methods often require substantially fewer steps to reach
high-quality solutions when initialized using greedy constructive search
rather than random picking.

By iterating cycles of constructive + local search, further performance
improvements can be achieved.

14

Outline
Metaheuristics
Work Environment
Bin Packing

Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP
Adaptive Iterated Construction Search
Multilevel Refinement

Greedy Randomized “Adaptive” Search Procedure (GRASP):
while termination criterion is not satisfied do

generate candidate solution s using
subsidiary greedy randomized constructive search

perform subsidiary local search on s

Randomization in constructive search ensures that a large number of
good starting points for subsidiary local search is obtained.
Constructive search in GRASP is ‘adaptive’ (or dynamic):
Heuristic value of solution component to be added to
a given partial candidate solution may depend on
solution components present in it.
Variants of GRASP without local search phase
(aka semi-greedy heuristics) typically do not reach
the performance of GRASP with local search.

15

Outline
Metaheuristics
Work Environment
Bin Packing

Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP
Adaptive Iterated Construction Search
Multilevel Refinement

Restricted candidate lists (RCLs)

Each step of constructive search adds a solution component selected
uniformly at random from a restricted candidate list (RCL).

RCLs are constructed in each step using a heuristic function h.

RCLs based on cardinality restriction comprise the k best-ranked solution
components. (k is a parameter of the algorithm.)

RCLs based on value restriction comprise all solution components l for
which h(l) ≤ hmin + α · (hmax − hmin),
where hmin = minimal value of h and hmax = maximal value
of h for any l. (α is a parameter of the algorithm.)

Possible extension: reactive GRASP (e.g., dynamic adaptation of α
during search)

16

Outline
Metaheuristics
Work Environment
Bin Packing

Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP
Adaptive Iterated Construction Search
Multilevel RefinementAdaptive Iterated Construction Search

Key Idea: Alternate construction and local search phases as in GRASP,
exploiting experience gained during the search process.

Realisation:

Associate weights with possible decisions made during constructive
search.

Initialize all weights to some small value τ0 at beginning of search
process.

After every cycle (= constructive + local local search phase), update
weights based on solution quality and solution components of current
candidate solution.

18

Outline
Metaheuristics
Work Environment
Bin Packing

Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP
Adaptive Iterated Construction Search
Multilevel Refinement

Adaptive Iterated Construction Search (AICS):
initialise weights
while termination criterion is not satisfied: do

generate candidate solution s using
subsidiary randomized constructive search

perform subsidiary local search on s
adapt weights based on s

19

Outline
Metaheuristics
Work Environment
Bin Packing

Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP
Adaptive Iterated Construction Search
Multilevel Refinement

Subsidiary constructive search:

The solution component to be added in each step of constructive search
is based on i) weights and ii) heuristic function h.

h can be standard heuristic function as, e.g., used by
greedy heuristics

It is often useful to design solution component selection in constructive
search such that any solution component may be chosen (at least with
some small probability) irrespective of its weight and heuristic value.

20

Outline
Metaheuristics
Work Environment
Bin Packing

Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP
Adaptive Iterated Construction Search
Multilevel Refinement

Subsidiary local search:

As in GRASP, local search phase is typically important for achieving
good performance.

Can be based on Iterative Improvement or more advanced LS method
(the latter often results in better performance).

Tradeoff between computation time used in construction phase vs local
search phase (typically optimized empirically, depends on problem
domain).

21

Outline
Metaheuristics
Work Environment
Bin Packing

Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP
Adaptive Iterated Construction Search
Multilevel Refinement

Weight updating mechanism:

Typical mechanism: increase weights of all solution components
contained in candidate solution obtained from local search.

Can also use aspects of search history;
e.g., current candidate solution can be used as basis for
weight update for additional intensification.

22

Outline
Metaheuristics
Work Environment
Bin Packing

Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP
Adaptive Iterated Construction Search
Multilevel Refinement

Example: A simple AICS algorithm for the TSP (1/2)
[Based on Ant System for the TSP, Dorigo et al. 1991]

Search space and solution set as usual (all Hamiltonian cycles in given
graph G). However represented in a construction tree T .

Associate weight τij with each edge (i, j) in G and T

Use heuristic values ηij := 1/wij .

Initialize all weights to a small value τ0 (parameter).

Constructive search start with randomly chosen vertex
and iteratively extend partial round trip φ by selecting vertex
not contained in φ with probability

[τij]
α · [ηij]β∑

l∈N ′(i)[τil]
α · [ηij]β

23

Outline
Metaheuristics
Work Environment
Bin Packing

Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP
Adaptive Iterated Construction Search
Multilevel Refinement

Example: A simple AICS algorithm for the TSP (2/2)

Subsidiary local search = typical iterative improvement

Weight update according to

τij := (1− ρ) · τij + ∆(ij, s′)

where ∆(i, j, s′) := 1/f(s′), if edge ij is contained in
the cycle represented by s′, and 0 otherwise.

Criterion for weight increase is based on intuition that edges contained in
short round trips should be preferably used in subsequent constructions.

Decay mechanism (controlled by parameter ρ) helps to avoid unlimited
growth of weights and lets algorithm forget past experience reflected in
weights.

(Just add a population of cand. solutions and you have
an Ant Colony Optimization Algorithm!)

24

Outline
Metaheuristics
Work Environment
Bin Packing

Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP
Adaptive Iterated Construction Search
Multilevel RefinementMultilevel Refinement

Key idea: make the problem recursively less refined creating a hierarchy of
approximations of the original problem.

an initial solution is found on the original problem or at a refined level
solutions are iteratively refined at each level
use of projection operators to transfer the solution from one level to
another

Multilevel Refinement
while Termination criterion is not satisfied do

coarse the problem π0 into πi, i = 0, . . . , k successive non degenerate
problems
i = k
determine an initial candidate solution for πk
repeat

i = i− 1
extend the solution found in πi+1 to πi
use subsidiary local search to refine the solution on πi

until i ≥ 0 ;
26

Outline
Metaheuristics
Work Environment
Bin Packing

Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP
Adaptive Iterated Construction Search
Multilevel Refinement

Example: Multilevel Refinement for TSP

Coarsen: fix some edges and contract vertices
Solve: matching

(always match vertices with the nearest unmatched neighbors)
Extend: uncontract vertices
Refine: LK heuristic

27

Outline
Metaheuristics
Work Environment
Bin Packing

Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP
Adaptive Iterated Construction Search
Multilevel Refinement

Note
crucial point: the solution to each refined problem must contain a
solution of the original problem (even if it is a poor solution)

Applications to

Graph Partitioning
Traveling Salesman
Graph Coloring

28

Outline
Metaheuristics
Work Environment
Bin Packing

Organization

Outline

1. Metaheuristics
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP
Adaptive Iterated Construction Search
Multilevel Refinement

2. Work Environment
Organization

3. Bin Packing

29

Outline
Metaheuristics
Work Environment
Bin Packing

Organization

Building a Work Environment

You will need these files for your project:

The code that implements the algorithm (likely, several versions)
The input:
Instances for the algorithm, parameters to guide the algorithm,
instructions for reporting.
The output:
The result, the performance measurements, perhaps animation data.
The journal:
A record of your experiments and findings.
Analysis tools:
statistics, data analysis, visualization, report.

How will you organize them? How will you make them work together?

31

Outline
Metaheuristics
Work Environment
Bin Packing

Organization

Suggested organization

root\
| src\
| data\
| results\
| log\
| bin\
|- README

32

Outline
Metaheuristics
Work Environment
Bin Packing

Organization

Example

Input controls on command line

comet queens.co -i instance.in -o output.sol -l run.log > data.out

Output on stdout, self-describing

#stat instance.in 30 90
seed: 9897868
Parameter1: 30
Parameter2: A
Read instance. Time: 0.016001
begin try 1
best 0 col 22 time 0.004000 iter 0 par_iter 0
best 3 col 21 time 0.004000 iter 0 par_iter 0
best 1 col 21 time 0.004000 iter 0 par_iter 0
best 0 col 21 time 0.004000 iter 1 par_iter 1
best 6 col 20 time 0.004000 iter 3 par_iter 1
best 4 col 20 time 0.004000 iter 4 par_iter 2
best 2 col 20 time 0.004000 iter 6 par_iter 4
exit iter 7 time 1.000062
end try 1

33

Outline
Metaheuristics
Work Environment
Bin Packing

Organization

Example

If one program that implements many heuristics

re-compile for new versions but take old versions with a journal in
archive.

use command line parameters to choose among the heuristics

C: getopt, getopt_long, opag (option parser generator)
Java: package org.apache.commons.cli
Comet: see example provided loadDIMACS.co

comet queens.co -i instance.in -o output.sol -l run.log -solver 2-opt > data.out

use identifying labels in naming file outputs
Example:
c0010.i0002.t0001.s02010.log

34

Outline
Metaheuristics
Work Environment
Bin Packing

Organization

Example

You will need Multiple runs, multiple instances and multiple algorithms.
Arrange this outside of your program: è unix scripts (eg, bash one line
program, perl, php)

Parse outputfiles:
Example
grep #stat | cut -f 2 -d " "

See http://www.gnu.org/software/coreutils/manual/ for shell tools.

Data in form of matrix or data frame goes directly into R imported by
read.table(), untouched by human hands!
alg instance run sol time
ROS le450_15a.col 3 21 0.00267
ROS le450_15b.col 3 21 0
ROS le450_15d.col 3 31 0.00267
RLF le450_15a.col 3 17 0.00533
RLF le450_15b.col 3 16 0.008
...

35

Outline
Metaheuristics
Work Environment
Bin Packing

Organization

Graphics

Visualization helps understanding

Problem visualization (graphviz, igraph)

Algorithm animation: (comet visualize)

Results visualization: recommended R (more on this later)

36

Outline
Metaheuristics
Work Environment
Bin Packing

Organization

Program Profiling

Check the correctness of your solutions many times

Plot the development of
best visited solution quality
current solution quality

over time and compare with other features of the algorithm.

37

Outline
Metaheuristics
Work Environment
Bin Packing

Organization

Code Optimization

Profile time consumption per program components

under Linux: gprof

1. add flag -pg in compilation
2. run the program
3. gprof gmon.out > a.txt

Java VM profilers (plugin for eclipse)

38

Outline
Metaheuristics
Work Environment
Bin Packing

Organization

Software Development
Extreme Programming & Scrum

Planning

Release planning creates the schedule // Make frequent small releases // The
project is divided into iterations

Designing

Simplicity // No functionality is added early // Refactor: eliminate unused
functionality and redundancy

Coding

Code must be written to agreed standards // Code the unit test first // All
production code is pair programmed // Leave optimization till last // No
overtime

Testing

All code must have unit tests // All code must pass all unit tests before it
can be released // When a bug is found tests are created

39

Outline
Metaheuristics
Work Environment
Bin PackingOutline

1. Metaheuristics
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP
Adaptive Iterated Construction Search
Multilevel Refinement

2. Work Environment
Organization

3. Bin Packing

40

Outline
Metaheuristics
Work Environment
Bin PackingKnapsack, Bin Packing, Cutting Stock

Knapsack

Given: a knapsack with maximum weight W and a set of n items
{1, 2, . . . , n}, with each item j associated to a profit pj and to a weight wj .
Task: Find the subset of items of maximal total profit and whose total
weight is not greater than W .

One dimensional bin packing

Given: A set L = (a1, a2, . . . , an) of items, each with a size s(ai) ∈ (0, 1]
and an unlimited number of unit-capacity bins B1, B2, . . . , Bm.
Task: Pack all the items into a minimum number of unit-capacity bins
B1, B2, . . . , Bm.

Cutting stock

Given: ... each item (paper roll) has a profit pj > 0 and a number of times it
must appear qi.
Task: determine the patterns of items to be packed (cut) in a single finite
bin (eg, paper strip) that minimizes the total waste.

41

Bin Packing

Cutting Stock

