
DM811

Heuristics for Combinatorial Optimization

Lecture 7
Local Search: Further Analysis

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Local Search Revisited
Search Space Properties

Components
Iterative Improvement
Beyond Iterative Improvement
Computational ComplexityOutline

1. Local Search Revisited
Components
Iterative Improvement
Beyond Iterative Improvement
Computational Complexity

2. Search Space Properties
Introduction
Neighborhoods Formalized
Distances

2

Local Search Revisited
Search Space Properties

Components
Iterative Improvement
Beyond Iterative Improvement
Computational ComplexityLS Algorithm Components

Search Space

Defined by the solution representation:

permutations
linear (scheduling)
circular (TSP)

arrays (assignment problems: GCP)

sets or lists (partition problems: Knapsack)

4

Local Search Revisited
Search Space Properties

Components
Iterative Improvement
Beyond Iterative Improvement
Computational ComplexityLS Algorithm Components

Neighborhood function

Also defined as: N : S × S → {T ,F} or N ⊆ S × S

neighborhood (set) of candidate solution s: N(s) := {s ′ ∈ S | N (s, s ′)}
neighborhood size is |N(s)|
neighborhood is symmetric if: s ′ ∈ N(s)⇒ s ∈ N(s ′)

neighborhood graph of (S , f ,N, π) is a directed vertex-weighted graph:
GN (π) := (V ,A) with V = S(π) and (uv) ∈ A⇔ v ∈ N(u)
(if symmetric neighborhood ⇒ undirected graph)

Notation: N when set, N when collection of sets or function

5



Local Search Revisited
Search Space Properties

Components
Iterative Improvement
Beyond Iterative Improvement
Computational Complexity

A neighborhood function is also defined by means of an operator.

An operator ∆ is a collection of operator functions δ : S → S such that

s ′ ∈ N(s) ⇐⇒ ∃ δ ∈ ∆, δ(s) = s ′

Definition

k-exchange neighborhood: candidate solutions s, s ′ are neighbors iff s differs
from s ′ in at most k solution components

Examples:

1-exchange (flip) neighborhood for SAT
(solution components = single variable assignments)

2-exchange neighborhood for TSP
(solution components = edges in given graph)

6

Local Search Revisited
Search Space Properties

Components
Iterative Improvement
Beyond Iterative Improvement
Computational ComplexityLS Algorithm Components

Definition:

Local minimum: search position without improving neighbors wrt given
evaluation function f and neighborhood N ,
i.e., position s ∈ S such that f (s) ≤ f (s ′) for all s ′ ∈ N(s).

Strict local minimum: search position s ∈ S such that
f (s) < f (s ′) for all s ′ ∈ N(s).

Local maxima and strict local maxima: defined analogously.

7

Local Search Revisited
Search Space Properties

Components
Iterative Improvement
Beyond Iterative Improvement
Computational ComplexityLS Algorithm Components

Note:

Local search implements a walk through the neighborhood graph

Procedural versions of init, step and terminate implement sampling
from respective probability distributions.

Memory state m can consist of multiple independent attributes, i.e.,
M(π) := M1 ×M2 × . . .×Ml(π).

Local search algorithms are Markov processes:
behavior in any search state {s,m} depends only
on current position s and (limited) memory m.

8

Local Search Revisited
Search Space Properties

Components
Iterative Improvement
Beyond Iterative Improvement
Computational ComplexityLS Algorithm Components

Search step (or move):
pair of search positions s, s ′ for which
s ′ can be reached from s in one step, i.e., N (s, s ′) and
step({s,m}, {s ′,m′}) > 0 for some memory states m,m′ ∈ M.

Search trajectory: finite sequence of search positions < s0, s1, . . . , sk >
such that (si−1, si ) is a search step for any i ∈ {1, . . . , k}
and the probability of initializing the search at s0
is greater zero, i.e., init({s0,m}) > 0
for some memory state m ∈ M.

Search strategy: specified by init and step function; to some extent
independent of problem instance and other components of LS algorithm.

random
based on evaluation function
based on memory

9



Local Search Revisited
Search Space Properties

Components
Iterative Improvement
Beyond Iterative Improvement
Computational ComplexityLS Algorithm Components

Evaluation (or cost) function:

function f (π) : S(π) 7→ R that maps candidate solutions of
a given problem instance π onto real numbers,
such that global optima correspond to solutions of π;
used for ranking or assessing neighbors of current
search position to provide guidance to search process.

Evaluation vs objective functions:

Evaluation function: part of LS algorithm.
Objective function: integral part of optimization problem.
Some LS methods use evaluation functions different from given objective
function (e.g., guided local search).

10

Local Search Revisited
Search Space Properties

Components
Iterative Improvement
Beyond Iterative Improvement
Computational ComplexityIterative Improvement

does not use memory
init: uniform random choice from S or construction heuristic
step: uniform random choice from improving neighbors

Pr(s, s ′) =

{
1/|I (s)| if s ′ ∈ I (s)

0 otherwise

where I (s) := {s ′ ∈ S | N (s, s ′) and f (s ′) < f (s)}
I (s) can not be maximal (see next slide)

terminates when no improving neighbor available

Note: Iterative improvement is also known as iterative descent or
hill-climbing.

12

Local Search Revisited
Search Space Properties

Components
Iterative Improvement
Beyond Iterative Improvement
Computational ComplexityIterative Improvement (cntd)

Pivoting rule decides which neighbors go in I (s)

Best Improvement (aka gradient descent, steepest descent, greedy
hill-climbing): Choose maximally improving neighbors,
i.e., I (s) := {s ′ ∈ N(s) | f (s ′) = g∗},
where g∗ := min{f (s ′) | s ′ ∈ N(s)}.

Note: Requires evaluation of all neighbors in each step!

First Improvement: Evaluate neighbors in fixed order,
choose first improving one encountered.

Note: Can be more efficient than Best Improvement but not in the worst
case; order of evaluation can impact performance.

13

Local Search Revisited
Search Space Properties

Components
Iterative Improvement
Beyond Iterative Improvement
Computational ComplexityExamples

Iterative Improvement for SAT

search space S : set of all truth assignments to variables in given formula F
(solution set S ′: set of all models of F )

neighborhood relation N : 1-flip neighborhood

memory: not used, i.e., M := {0}
initialization: uniform random choice from S , i.e., init(∅, {a}) := 1/|S | for all
assignments a

evaluation function: f (a) := number of clauses in F
that are unsatisfied under assignment a
(Note: f (a) = 0 iff a is a model of F .)

step function: uniform random choice from improving neighbors, i.e.,
step(a, a′) := 1/|I (a)| if a′ ∈ I (a),
and 0 otherwise, where I (a) := {a′ | N (a, a′) ∧ f (a′) < f (a)}
termination: when no improving neighbor is available
i.e., terminate(a,>) := 1 if I (a) = ∅, and 0 otherwise.

14



Local Search Revisited
Search Space Properties

Components
Iterative Improvement
Beyond Iterative Improvement
Computational ComplexityExamples

Random order first improvement for SAT
URW-for-SAT(F ,maxSteps)
input: propositional formula F , integer maxSteps
output: a model for F or ∅
choose assignment ϕ of truth values to all variables in F

uniformly at random;
steps := 0;
while ¬(ϕ satisfies F ) and (steps < maxSteps) do

select x uniformly at random from {x ′|x ′ is a variable in F and
changing value of x ′ in ϕ decreases the number of unsatisfied clauses}
steps := steps+1;

if ϕ satisfies F then
return ϕ

else
return ∅

15

Local Search Revisited
Search Space Properties

Components
Iterative Improvement
Beyond Iterative Improvement
Computational ComplexityExamples

Iterative Improvement for TSP
TSP-2opt-first(s)
input: an initial candidate tour s ∈ S(∈)
output: a local optimum s ∈ S(π)

∆ = 0;
for i = 1 to n − 2 do

if i = 1 then n′ = n − 1 else n′ = n
for j = i + 2 to n′ do

∆ij = d(ci , cj ) + d(ci+1, cj+1)− d(ci , ci+1)− d(cj , cj+1)
if ∆ij < 0 then

UpdateTour(s, i, j)

is it really?

16

Local Search Revisited
Search Space Properties

Components
Iterative Improvement
Beyond Iterative Improvement
Computational ComplexityExamples

Iterative Improvement for TSP
TSP-2opt-first(s)
input: an initial candidate tour s ∈ S(∈)
output: a local optimum s ∈ S(π)

∆ = 0;
Improvement=TRUE;
while Improvement==TRUE do

Improvement=FALSE;
for i = 1 to n − 2 do

if i = 1 then n′ = n − 1 else n′ = n
for j = i + 2 to n′ do

∆ij = d(ci , cj ) + d(ci+1, cj+1)− d(ci , ci+1)− d(cj , cj+1)
if ∆ij < 0 then

UpdateTour(s, i, j)
Improvement=TRUE

17

Local Search Revisited
Search Space Properties

Components
Iterative Improvement
Beyond Iterative Improvement
Computational ComplexityExamples

Random-order first improvement for the TSP

Given: TSP instance G with vertices v1, v2, . . . , vn.
search space: Hamiltonian cycles in G ;
neighborhood relation N: standard 2-exchange neighborhood

Initialization:
search position := fixed canonical tour < v1, v2, . . . , vn, v1 >
P := random permutation of {1, 2, . . . , n}

Search steps: determined using first improvement
w.r.t. f (s) = cost of tour s, evaluating neighbors
in order of P (does not change throughout search)

Termination: when no improving search step possible
(local minimum)

19



Local Search Revisited
Search Space Properties

Components
Iterative Improvement
Beyond Iterative Improvement
Computational ComplexityExamples

Graph Coloring and Constraint Satisfaction

Different choices for the candidate solutions, neighborhood structures and
evaluation function define different approaches to the problem

k-fixed complete proper
k-fixed partial proper +
k-fixed complete unproper + + +
k-fixed partial unproper −

k-variable complete proper ++
k-variable partial proper −
k-variable complete unproper ++
k-variable partial unproper −

20


