Outline

Components Iterative Improvement Beyond Iterative Improver Computational Complexit

DM811 Heuristics for Combinatorial Optimization

Lecture 7 Local Search: Further Analysis

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

1. Local Search Revisited

Components Iterative Improvement Beyond Iterative Improvement Computational Complexity

2. Search Space Properties

Introduction Neighborhoods Formalized Distances

LS Algorithm Components

Local Search Revisited Search Space Properties Computational Complexity

4

LS Algorithm Components

Local Search Revisited Search Space Properties Components Iterative Improvement Beyond Iterative Improver Computational Complexit

2

5

Search Space

Defined by the solution representation:

- permutations
 - linear (scheduling)
 - circular (TSP)
- arrays (assignment problems: GCP)
- sets or lists (partition problems: Knapsack)

Neighborhood function Also defined as: $\mathcal{N} : S \times S \to \{T, F\}$ or $\mathcal{N} \subseteq S \times S$ • neighborhood (set) of candidate solution s: $N(s) := \{s' \in S \mid \mathcal{N}(s, s')\}$ • neighborhood size is |N(s)|• neighborhood is symmetric if: $s' \in N(s) \Rightarrow s \in N(s')$ • neighborhood graph of (S, f, N, π) is a directed vertex-weighted graph: $G_{\mathcal{N}}(\pi) := (V, A)$ with $V = S(\pi)$ and $(uv) \in A \Leftrightarrow v \in N(u)$ (if symmetric neighborhood \Rightarrow undirected graph)

Notation: N when set, \mathcal{N} when collection of sets or function

LS Algorithm Components

A neighborhood function is also defined by means of an operator.

An operator Δ is a collection of operator functions $\delta: S \to S$ such that

 $s' \in N(s) \iff \exists \delta \in \Delta, \delta(s) = s'$

Definition

k-exchange neighborhood: candidate solutions s, s' are neighbors iff s differs from s' in at most k solution components

Examples:

- 1-exchange (flip) neighborhood for SAT (solution components = single variable assignments)
- 2-exchange neighborhood for TSP (solution components = edges in given graph)

LS Algorithm Components

Components Local Search Revisited Search Space Properties Computational Complexit

Note:

- Local search implements a walk through the neighborhood graph
- Procedural versions of init, step and terminate implement sampling from respective probability distributions.
- Memory state *m* can consist of multiple independent attributes, *i.e.*, $M(\pi) := M_1 \times M_2 \times \ldots \times M_{l(\pi)}$.
- Local search algorithms are Markov processes: behavior in any search state {*s*, *m*} depends only on current position *s* and (limited) memory *m*.

Definition:

- Local minimum: search position without improving neighbors wrt given evaluation function f and neighborhood N,
 i.e., position s ∈ S such that f(s) ≤ f(s') for all s' ∈ N(s).
- Strict local minimum: search position $s \in S$ such that f(s) < f(s') for all $s' \in N(s)$.
- Local maxima and strict local maxima: defined analogously.

LS Algorithm Components

Local Search Revisited Search Space Properties Components Iterative Improvement Beyond Iterative Improver Computational Complexit

7

Search step (or move):

pair of search positions s, s' for which s' can be reached from s in one step, *i.e.*, $\mathcal{N}(s, s')$ and $step(\{s, m\}, \{s', m'\}) > 0$ for some memory states $m, m' \in M$.

- Search trajectory: finite sequence of search positions $\langle s_0, s_1, \ldots, s_k \rangle$ such that (s_{i-1}, s_i) is a search step for any $i \in \{1, \ldots, k\}$ and the probability of initializing the search at s_0 is greater zero, *i.e.*, $init(\{s_0, m\}) > 0$ for some memory state $m \in M$.
- Search strategy: specified by init and step function; to some extent independent of problem instance and other components of LS algorithm.
 - random
 - based on evaluation function
 - based on memory

LS Algorithm Components

Local Search Revisited Search Space Properties Computational Complexity

Iterative Improvement

Evaluation (or cost) function:

- function $f(\pi) : S(\pi) \mapsto \mathbf{R}$ that maps candidate solutions of a given problem instance π onto real numbers, such that global optima correspond to solutions of π ;
- used for ranking or assessing neighbors of current search position to provide guidance to search process.

Evaluation vs objective functions:

- Evaluation function: part of LS algorithm.
- *Objective function*: integral part of optimization problem.
- Some LS methods use evaluation functions different from given objective function (*e.g.*, guided local search).

• does not use memory

- init: uniform random choice from S or construction heuristic
- step: uniform random choice from improving neighbors

 $\mathsf{Pr}(s,s') = egin{cases} 1/|I(s)| ext{ if } s' \in I(s) \ 0 ext{ otherwise} \end{cases}$

where $I(s) := \{s' \in S \mid \mathcal{N}(s, s') \text{ and } f(s') < f(s)\}$ I(s) can not be maximal (see next slide)

• terminates when no improving neighbor available

Note: Iterative improvement is also known as *iterative descent* or *hill-climbing*.

10

Components

Iterative Improvement

Beyond Iterative Improve

omputational Complexit

Local Search Revisited

Search Space Properties

Iterative Improvement (cntd)

Pivoting rule decides which neighbors go in I(s)

Best Improvement (aka gradient descent, steepest descent, greedy hill-climbing): Choose maximally improving neighbors, *i.e.*, *I*(*s*) := {*s*' ∈ *N*(*s*) | *f*(*s*') = *g**}, where *g** := min{*f*(*s*') | *s*' ∈ *N*(*s*)}.

Note: Requires evaluation of all neighbors in each step!

• First Improvement: Evaluate neighbors in fixed order, choose first improving one encountered.

Note: Can be more efficient than Best Improvement but not in the worst case; order of evaluation can impact performance.

Examples

Iterative Improvement for SAT

- search space S: set of all truth assignments to variables in given formula F (solution set S': set of all models of F)
- neighborhood relation \mathcal{N} : 1-flip neighborhood
- memory: not used, *i.e.*, $M := \{0\}$
- initialization: uniform random choice from S, i.e., init(∅, {a}) := 1/|S| for all assignments a
- evaluation function: f(a) := number of clauses in F that are unsatisfied under assignment a (Note: f(a) = 0 iff a is a model of F.)
- step function: uniform random choice from improving neighbors, *i.e.*, step(a, a') := 1/|I(a)| if a' ∈ I(a), and 0 otherwise, where I(a) := {a' | N(a, a') ∧ f(a') < f(a)}
- termination: when no improving neighbor is available *i.e.*, terminate $(a, \top) := 1$ if $I(a) = \emptyset$, and 0 otherwise.

12

Components

Iterative Improvement

Beyond Iterative Improv

omputational Complexit

Local Search Revisited

Search Space Properties

Examples

Local Search Revisited Components Letrative Improvement Beyond Iterative Improver Computational Complexity

Examples

Local Search Revisited Search Space Properties Components Beyond Itera Computation

Components Iterative Improvement Beyond Iterative Improver Computational Complexit

Random order first improvement for SAT

```
URW-for-SAT(F,maxSteps)
input: propositional formula F, integer maxSteps
output: a model for F or Ø
```

choose assignment φ of truth values to all variables in F
uniformly at random;
steps := 0;
while ¬(φ satisfies F) and (steps < maxSteps) do
 select x uniformly at random from {x'|x' is a variable in F and
 changing value of x' in φ decreases the number of unsatisfied clauses}
 steps := steps+1;
if φ satisfies F then</pre>

| return φ else

🗋 return 🖉

Examples

Local Search Revisited Search Space Properties Beyond Iterative Improver Computational Complexity

Iterative Improvement for TSP

```
TSP-2opt-first(s)
input: an initial candidate tour s \in S(\in)
output: a local optimum s \in S(\pi)
```

$\Delta = 0;$

```
Improvement = TRUE;
while Improvement == TRUE do
Improvement = FALSE;
for i = 1 to n - 2 do
if i = 1 then n' = n - 1 else n' = n
for j = i + 2 to n' do
\Delta_{ij} = d(c_i, c_j) + d(c_{i+1}, c_{j+1}) - d(c_i, c_{i+1}) - d(c_j, c_{j+1})
if \Delta_{ij} < 0 then
UpdateTour(s, i, j)
Improvement = TRUE
```

Iterative Improvement for TSP

TSP-2opt-first(s) input: an initial candidate tour $s \in S(\in)$ output: a local optimum $s \in S(\pi)$

is it really?

Local Search Revisited Search Space Properties Components Iterative Improvement Beyond Iterative Improver Computational Complexity

16

Examples

Random-order first improvement for the TSP

- **Given:** TSP instance G with vertices v_1, v_2, \ldots, v_n .
- search space: Hamiltonian cycles in G;
- neighborhood relation N: standard 2-exchange neighborhood
- Initialization:

```
search position := fixed canonical tour \langle v_1, v_2, \dots, v_n, v_1 \rangle

P := random permutation of \{1, 2, \dots, n\}
```

- Search steps: determined using first improvement w.r.t. $f(s) = \cos t$ of tour s, evaluating neighbors in order of P (does not change throughout search)
- **Termination:** when no improving search step possible (local minimum)

15

Components

Examples

20

Graph Coloring and Constraint Satisfaction

Different choices for the candidate solutions, neighborhood structures and evaluation function define different approaches to the problem

<i>k</i> -fixed	complete	proper	
<i>k</i> -fixed	partial	proper	+
<i>k</i> -fixed	complete	unproper	+ + +
<i>k</i> -fixed	partial	unproper	—
<i>k</i> -variable	complete	proper	++
<i>k</i> -variable	partial	proper	—
<i>k</i> -variable	complete	unproper	++
<i>k</i> -variable	partial	unproper	_
			•