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Computational ComplexitySingle Machine Total Weighted Tardiness

Given: a set of n jobs {J1, . . . , Jn} to be processed on a single machine
and for each job Ji a processing time pi , a weight wi and a due date di .

Task: Find a schedule that minimizes
the total weighted tardiness

∑n
i=1 wi · Ti

where Ti = max{Ci − di , 0} (Ci completion time of job Ji )

Example:
Job J1 J2 J3 J4 J5 J6

Processing Time 3 2 2 3 4 3
Due date 6 13 4 9 7 17
Weight 2 3 1 5 1 2

Sequence φ = J3, J1, J5, J4, J1, J6

Job J3 J1 J5 J4 J1 J6

Ci 2 5 9 12 14 17
Ti 0 0 2 3 1 0
wi · Ti 0 0 2 15 3 0
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Beyond Iterative Improvement
Computational ComplexityThe Max Independent Set Problem

Also called “stable set problem” or “vertex packing problem”.
Given: an undirected graph G (V ,E ) and a non-negative weight function ω
on V (ω : V → R)

Task: A largest weight independent set of vertices, i.e., a subset V ′ ⊆ V
such that no two vertices in V ′ are joined by an edge in E .
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Possibilities:

Enlarge the neighborhood

Restart: re-initialize search whenever a local optimum
is encountered.
(Often rather ineffective due to cost of initialization.)

Non-improving steps: in local optima, allow selection of
candidate solutions with equal or worse evaluation function value, e.g.,
using minimally worsening steps.
(Can lead to long walks in plateaus, i.e., regions of
search positions with identical evaluation function.)
This is what Metaheuristics do.

Note: None of these mechanisms is guaranteed to always
escape effectively from local optima.
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Diversification vs Intensification

Goal-directed and randomized components of LS strategy need to be
balanced carefully.

Intensification: aims at greedily increasing solution quality, e.g., by
exploiting the evaluation function.

Diversification: aims at preventing search stagnation, that is, the search
process getting trapped in confined regions.

Examples:

Iterative Improvement (II): intensification strategy.
Uninformed Random Walk/Picking (URW/P): diversification strategy.

Balanced combination of intensification and diversification mechanisms forms
the basis for advanced LS methods.
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Computational ComplexityScientific Knowledge on LS

Performance analysis

probabilistic analysis: aims to determine average-case perfomance for a
given probability distribution of the instances

worst-case analysis: over all possible instances

empirical analysis

Time complexity
e.g. # of iterations required to reach local optima  general theory of
time complexity of LS

Asymptotic convergence when a probabilistic iteration mechanism is
applied
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Computational ComplexityComputational Complexity of LS

For a local search algorithm to be effective, search initialization
and individual search steps should be efficiently computable.

Complexity class PLS: class of problems for which a local
search algorithm exists with polynomial time complexity for:

search initialization
any single search step, including computation of
evaluation function value

For any problem in PLS . . .
local optimality can be verified in polynomial time
improving search steps can be computed in polynomial time
but: finding local optima may require super-polynomial time
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PLS-complete: Among the most difficult problems in PLS;
if for any of these problems local optima can be found
in polynomial time, the same would hold for all problems in PLS.

Some complexity results:

TSP with k-exchange neighborhood with k > 3
is PLS-complete.

TSP with 2- or 3-exchange neighborhood is in PLS, but
PLS-completeness is unknown.
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Review basic theoretical concepts

Fix terminology

Develop intuition on features of local search that may in guiding the
design of LS algorithms
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Search space S

Neighborhood function N : S ⊆ 2S

Evaluation function f (π) : S 7→ R

Problem instance π

Definition:
The search landscape L is the vertex-labeled neighborhood graph given by
the triplet L = (S(π),N(π), f (π)).
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Transition Graph of Iterative Improvement
Given L = (S(π),N(π), f (π)), the transition graph of iterative improvement
is a directed acyclic subgraphs obtained from L by deleting all arcs (i , j) for
which it holds that the cost of solution j is worse than or equal to the cost of
solution i .

It can be defined for other algorithms as well and it plays a central role in the
theoretical analysis of proofs of convergence.
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Landscape in
one-dimension Tabu Search Guided Local Search

Iterated Local Search Evolutionary Alg.
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The behavior and performance of an LS algorithm on a given problem
instance crucially depends on properties of the respective search landscape.

Simple properties:

search space size |S |
reachability: solution j is reachable from solution i if neighborhood
graph has a path from i to j .

strongly connected neighborhood graph

weakly optimally connected neighborhood graph

distance between solutions
neighborhood size (ie, degree of vertices in neigh. graph)
cost of fully examining the neighborhood
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Goal: providing a formal description of neighborhood functions for the three
main solution representations:

Permutation
linear permutation: Single Machine Total Weighted Tardiness Problem
circular permutation: Traveling Salesman Problem

Assignment: Graph Coloring Problem, SAT, CSP
Set, Partition: Knapsack, Max Independent Set

A neighborhood function N : S → S × S is also defined through an operator.
An operator ∆ is a collection of operator functions δ : S → S such that

s ′ ∈ N(s) ⇐⇒ ∃δ ∈ ∆ | δ(s) = s ′
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Π(n) indicates the set all permutations of the numbers {1, 2, . . . , n}

(1, 2 . . . , n) is the identity permutation ι.

If π ∈ Π(n) and 1 ≤ i ≤ n then:
πi is the element at position i
posπ(i) is the position of element i

Alternatively, a permutation is a bijective function π(i) = πi

The permutation product π · π′ is the composition (π · π′)i = π′(π(i))

For each π there exists a permutation such that π−1 · π = ι

∆N ⊂ Π
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Swap operator
∆S = {δiS |1 ≤ i ≤ n}

δiS(π1 . . . πiπi+1 . . . πn) = (π1 . . . πi+1πi . . . πn)

Interchange operator
∆X = {δijX |1 ≤ i < j ≤ n}

δijX (π) = (π1 . . . πi−1πjπi+1 . . . πj−1πiπj+1 . . . πn)

(≡ set of all transpositions)

Insert operator
∆I = {δijI |1 ≤ i ≤ n, 1 ≤ j ≤ n, j 6= i}

δijI (π) =

{
(π1 . . . πi−1πi+1 . . . πjπiπj+1 . . . πn) i < j
(π1 . . . πjπiπj+1 . . . πi−1πi+1 . . . πn) i > j
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Reversal (2-edge-exchange)

∆R = {δijR |1 ≤ i < j ≤ n}

δijR(π) = (π1 . . . πi−1πj . . . πiπj+1 . . . πn)

Block moves (3-edge-exchange)

∆B = {δijkB |1 ≤ i < j < k ≤ n}

δijB(π) = (π1 . . . πi−1πj . . . πkπi . . . πj−1πk+1 . . . πn)

Short block move (Or-edge-exchange)

∆SB = {δijSB |1 ≤ i < j ≤ n}

δijSB(π) = (π1 . . . πi−1πjπj+1πj+2πi . . . πj−1πj+3 . . . πn)
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An assignment can be represented as a mapping
σ : {X1 . . .Xn} → {v : v ∈ D, |D| = k}:

σ = {. . . ,Xi = vi , . . . ,Xj = vj , . . .}

One-exchange operator

∆1E = {δil1E |1 ≤ i ≤ n, 1 ≤ l ≤ k}

δil1E
(
σ) =

{
σ : σ′(Xi ) = vl and σ′(Xj) = σ(Xj) ∀j 6= i

}

Two-exchange operator

∆2E = {δij2E |1 ≤ i < j ≤ n}

δij2E

{
σ : σ′(Xi ) = σ(Xj), σ

′(Xj) = σ(Xi ) and σ′(Xl) = σ(Xl) ∀l 6= i , j
}
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An assignment can be represented as a partition of objects selected and not
selected s : {X} → {C ,C}
(it can also be represented by a bit string)

One-addition operator
∆1E = {δv1E |v ∈ C}

δv1E
(
s) =

{
s : C ′ = C ∪ v and C

′
= C \ v}

One-deletion operator
∆1E = {δv1E |v ∈ C}

δv1E
(
s) =

{
s : C ′ = C \ v and C

′
= C ∪ v}

Swap operator
∆1E = {δv1E |v ∈ C , u ∈ C}

δv1E
(
s) =

{
s : C ′ = C ∪ u \ v and C

′
= C ∪ v \ u}
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Set of paths in L with s, s ′ ∈ S :

Φ(s, s ′) = {(s1, . . . , sh)|s1 = s, sh = s ′ ∀i : 1 ≤ i ≤ h − 1, 〈si , si+1〉 ∈ EL}

If φ = (s1, . . . , sh) ∈ Φ(s, s ′) let |φ| = h be the length of the path; then the
distance between any two solutions s, s ′ is the length of shortest path
between s and s ′ in L:

dN (s, s ′) = min
φ∈Φ(s,s′)

|Φ|

diam(L) = max{dN (s, s ′) | s, s ′ ∈ S} (= maximal distance between any two
candidate solutions)
(= worst-case lower bound for number of search steps required for reaching
(optimal) solutions)

Note: with permutations it is easy to see that:

dN (π, π′) = dN (π−1 · π′, ι)
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Distances for Linear Permutation Representations

Swap neighborhood operator
computable in O(n2) by the precedence based distance metric:
dS(π, π′) = #{〈i , j〉|1 ≤ i < j ≤ n, posπ′(πj) < posπ′(πi )}.
diam(GN ) = n(n − 1)/2

Interchange neighborhood operator
Computable in O(n) + O(n) since
dX (π, π′) = dX (π−1 · π′, ι) = n − c(π−1 · π′)
c(π) is the number of disjoint cycles that decompose a permutation.
diam(GNX ) = n − 1

Insert neighborhood operator
Computable in O(n) + O(n log(n)) since
dI (π, π

′) = dI (π
−1 · π′, ι) = n − |lis(π−1 · π′)| where lis(π) denotes the

length of the longest increasing subsequence.
diam(GNI ) = n − 1
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Distances for Circular Permutation Representations

Reversal neighborhood operator
sorting by reversal is known to be NP-hard
surrogate in TSP: bond distance

Block moves neighborhood operator
unknown whether it is NP-hard but there does not exist a proved
polynomial-time algorithm
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Distances for Assignment Representations

Hamming Distance
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Distances for Partitioning Problems
given a set of elements E = {1, 2 . . . |E |} find a partition of the set into a
number of subsets P = {C1,C2, . . . ,Ck}, Ci ⊆ E and Ci ∩ Cj = ∅ for all
i 6= j , with each of the subsets having to meet the same requirements.
(Exhibit intrinsic symmetry)

One-exchange neighborhood operator

The partition-distance d1E (P,P ′) between two partitions P and P ′ is
the minimum number of elements that must be moved between subsets
in P so that the resulting partition equals P ′.
The partition-distance can be computed in polynomial time by solving
an assignment problem. Given the assignment matrix M where in each
cell (i , j) it is |Ci ∩ C ′j | with Ci ∈ P and C ′j ∈ P ′ and defined A(P,P ′)
the assignment of maximal sum then it is d1E (P,P ′) = n − A(P,P ′)
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Example: Search space size and diameter for the TSP

Search space size = (n − 1)!/2

Insert neighborhood
size = (n − 3)n
diameter = n − 2

2-exchange neighborhood
size =

(n
2

)
= n · (n − 1)/2

diameter in [n/2, n − 2]

3-exchange neighborhood
size =

(n
3

)
= n · (n − 1) · (n − 2)/6

diameter in [n/3, n − 1]
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Example: Search space size and diameter for SAT

SAT instance with n variables, 1-flip neighborhood:
GN = n-dimensional hypercube; diameter of GN = n.
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Let N1 and N2 be two different neighborhood functions for the same
instance (S , f , π) of a combinatorial optimization problem.
If for all solutions s ∈ S we have N1(s) ⊆ N2(s ′) then we say that N2
dominates N1

Example:

In TSP, 1-insert is dominated by 3-exchange.
(1-insert corresponds to 3-exchange and there are 3-exchanges that are not
1-insert)
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Random instances ⇒ m clauses of n uniformly chosen variables
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SLMIN

SLOPELEDGE

LMAXSLMAX

LMIN

IPLAT

position type > = <

SLMIN (strict local min) + – –
LMIN (local min) + + –
IPLAT (interior plateau) – + –
SLOPE + – +
LEDGE + + +
LMAX (local max) – + +
SLMAX (strict local max) – – +

“+” = present, “–” absent; table entries refer to neighbors with
larger (“>”) , equal (“=”), and smaller (“<”) evaluation function values
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Idea: Rugged search landscapes, i.e., landscapes with high
variability in evaluation function value between neighboring search positions,
are hard to search.

Example: Smooth vs rugged search landscape

Note: Landscape ruggedness is closely related to local minima density:
rugged landscapes tend to have many local minima.

 NK model [Kauffman, The origin of Order, 1993] to study evolution
(used also in econmics)

N loci ie. genes in a genotype

2 alleles

K epistatic interactions (dependencies among genes in the contribution to
fitness)
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Definitions:

Positions s, s ′ are mutually accessible at level l
iff there is a path connecting s ′ and s in the neighborhood graph that
visits only positions t with g(t) ≤ l .

The barrier level between positions s, s ′, bl(s, s ′)
is the lowest level l at which s ′ and s ′ are mutually accessible;
the difference between the level of s and bl(s, s ′) is called
the barrier height between s and s ′.

Basins, i.e., maximal (connected) regions of search positions
below a given level, form an important basis for characterizing
search space structure.
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Example: Basins in a simple search landscape and corresponding basin tree

B4

B3

B1

B2

l2
l1

B4

B3

B1

B2

Note: The basin tree only represents basins just below the critical levels at
which neighboring basins are joined (by a saddle).
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Total Weighted Completion Time on Unrelated Parallel Machines Problem

Input: A set of jobs J to be processed on a set of parallel machines M. Each
job j ∈ J has a weight wj and processing time pij that depends on the
machine i ∈ M on which it is processed.

Task: Find a schedule of the jobs on the machines such that the sum of
weighted completion time of the jobs is minimal.
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Steiner Tree Problem

Input: A graph G = (V ,E ), a weight function ω : E 7→ N, and a subset
U ⊆ V .

Task: Find a Steiner tree, that is, a subtree T = (VT ,ET ) of G that includes
all the vertices of U and such that the sum of the weights of the edges in the
subtree is minimal.

Vertices in U are the special vertices and
vertices in S = V \ U are Steiner vertices.
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