
DM811

Heuristics for Combinatorial Optimization

Lecture 9
Stochastic Local Search and Metaheuristics

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Metaheuristics
Population Based MetaheuristicsOutline

1. Trajectory Based Metaheuristics
Randomized Iterative Improvement
Tabu Search
Simulated Annealing
Iterated Local Search
Variable Neighborhood Search
Guided Local Search

2. Population Based Metaheuristics
Evolutionary Algorithms

2

Metaheuristics
Population Based MetaheuristicsOutline

1. Trajectory Based Metaheuristics
Randomized Iterative Improvement
Tabu Search
Simulated Annealing
Iterated Local Search
Variable Neighborhood Search
Guided Local Search

2. Population Based Metaheuristics
Evolutionary Algorithms

4

Metaheuristics
Population Based MetaheuristicsMin-Conflict Heuristic

(Already encountered)

6

Metaheuristics
Population Based MetaheuristicsMin-Conflict Heuristic

In Comet

import cotls;
int n = 16;
range Size = 1..n;
UniformDistribution distr(Size);

Solver<LS> m();
var{int} queen[Size](m,Size) := distr.get();
ConstraintSystem<LS> S(m);

S.post(alldifferent(queen));
S.post(alldifferent(all(i in Size) queen[i] + i));
S.post(alldifferent(all(i in Size) queen[i] - i));
m.close();

int it = 0;
while (S.violations() > 0 && it < 50 * n) {
select(q in Size : S.violations(queen[q])>0) {
selectMin(v in Size)(S.getAssignDelta(queen[q],v)) {
queen[q] := v;
cout<<"change:␣queen["<<q<<"]␣:=␣"<<v<<"␣viol:␣"<<S.violations() <<

endl;
}
it = it + 1;

}
}
cout << queen << endl;

7

Metaheuristics
Population Based MetaheuristicsRandomized Iterative Impr.

aka, Stochastic Hill Climbing

Key idea: In each search step, with a fixed probability
perform an uninformed random walk step instead of
an iterative improvement step.

Randomized Iterative Improvement (RII):
determine initial candidate solution s
while termination condition is not satisfied do

With probability wp:
choose a neighbor s ′ of s uniformly at random

Otherwise:
choose a neighbor s ′ of s such that f (s ′) < f (s) or,
if no such s ′ exists, choose s ′ such that f (s ′) is minimal

s := s ′

8

Metaheuristics
Population Based Metaheuristics

Example: Randomized Iterative Improvement for GCP

procedure RIIGCP(F , wp, maxSteps)
input: a graph G and k, probability wp, integer maxSteps
output: a proper coloring ϕ for G or ∅
choose coloring ϕ of G uniformly at random;
steps := 0;
while not(ϕ is not proper) and (steps < maxSteps) do

with probability wp do
select v in V and c in Γ uniformly at random;

otherwise
select v in V c and c in Γ uniformly at random from those that

maximally decrease number of edge violations;
change color of v in ϕ;
steps := steps+1;

end
if ϕ is proper for G then return ϕ
else return ∅
end

end RIIGCP

9

Metaheuristics
Population Based Metaheuristics

Note:

No need to terminate search when local minimum is encountered
Instead: Impose limit on number of search steps or CPU time,
from beginning of search or after last improvement.
Probabilistic mechanism permits arbitrary long sequences
of random walk steps
Therefore: When run sufficiently long, RII is guaranteed
to find (optimal) solution to any problem instance with
arbitrarily high probability.

10

Metaheuristics
Population Based MetaheuristicsMin-Conflict + Random Walk

Example of slc heuristic: with prob. wp select a random move, with prob.
1− wp select the best

11

Metaheuristics
Population Based MetaheuristicsTabu Search

Key idea: Use aspects of search history (memory) to escape from local
minima.

Associate tabu attributes with candidate solutions or
solution components.

Forbid steps to search positions recently visited by
underlying iterative best improvement procedure based on
tabu attributes.

Tabu Search (TS):
determine initial candidate solution s
While termination criterion is not satisfied:
|| determine set N ′ of non-tabu neighbors of s
|| choose a best candidate solution s ′ in N ′
||
|| update tabu attributes based on s ′
b s := s ′

13

Metaheuristics
Population Based Metaheuristics

Example: Tabu Search for GCP – TabuCol

Search space: set of all complete colorings of G .
Solution set: proper colorings of G .
Neighborhood relation: one-exchange.
Memory: Associate tabu status (Boolean value) with each pair (v , c).
Initialization: a construction heuristic
Search steps:

pairs (v , c) are tabu if they have been changed
in the last tt steps;
neighboring colorings are admissible if they
can be reached by changing a non-tabu pair
or have fewer unsatisfied edge constr. than the best coloring
seen so far (aspiration criterion);
choose uniformly at random admissible coloring
with minimal number of unsatisfied constraints.

Termination: upon finding a proper coloring for G or after given bound
on number of search steps has been reached or after a number of idle
iterations

14

Metaheuristics
Population Based Metaheuristics

Note:

Non-tabu search positions in N(s) are called
admissible neighbors of s.
After a search step, the current search position
or the solution components just added/removed from it
are declared tabu for a fixed number of subsequent
search steps (tabu tenure).
Often, an additional aspiration criterion is used: this specifies
conditions under which tabu status may be overridden (e.g., if
considered step leads to improvement in incumbent solution).
Crucial for efficient implementation:

keep time complexity of search steps minimal
by using special data structures, incremental updating
and caching mechanism for evaluation function values;
efficient determination of tabu status:
store for each variable x the number of the search step
when its value was last changed itx ; x is tabu if
it − itx < tt, where it = current search step number.

15

Metaheuristics
Population Based Metaheuristics

Note: Performance of Tabu Search depends crucially on
setting of tabu tenure tt:

tt too low ⇒ search stagnates due to inability to escape
from local minima;
tt too high ⇒ search becomes ineffective due to overly restricted search
path (admissible neighborhoods too small)

Advanced TS methods:

Robust Tabu Search [Taillard, 1991]:
repeatedly choose tt from given interval;
also: force specific steps that have not been made for a long time.

Reactive Tabu Search [Battiti and Tecchiolli, 1994]:
dynamically adjust tt during search;
also: use escape mechanism to overcome stagnation.

16

Metaheuristics
Population Based Metaheuristics

Further improvements can be achieved by using intermediate-term or
long-term memory to achieve additional intensification or diversification.

Examples:

Occasionally backtrack to elite candidate solutions, i.e., high-quality
search positions encountered earlier in the search; when doing this, all
associated tabu attributes are cleared.

Freeze certain solution components and keep them fixed
for long periods of the search.

Occasionally force rarely used solution components to be introduced into
current candidate solution.

Extend evaluation function to capture frequency of use
of candidate solutions or solution components.

17

Metaheuristics
Population Based Metaheuristics

Tabu search algorithms algorithms are state of the art
for solving many combinatorial problems, including:

SAT and MAX-SAT
CSP and MAX-CSP
GCP
many scheduling problems

Crucial factors in many applications:

choice of neighborhood relation

efficient evaluation of candidate solutions
(caching and incremental updating mechanisms)

18

Metaheuristics
Population Based MetaheuristicsMin-Conflict + Tabu Search

After the value of a variable x is changed from v to v ′ with min-conflict
heuristic, the variable/value pair (xi , v) is declared tabu for the next tt
steps

tt = 2 is often a good choice

è Advantage: the neighborhood does not need to be searched exahustively

19

Metaheuristics
Population Based MetaheuristicsMin-Conflict + RW + TS

Another more involved hybrid:

Example on GCP

: decision tree for step

 select the
second best colour

 select
best colour

 many colours
with best improvement

 only one colour
with best improvement

select one,
not most recent

randomly

1−wp

select v and c
randomly

select v in Vc

1−p p

wp

select best colour

colour randomly

most recent
among colors for vamong colors for v

not most recent

20

Metaheuristics
Population Based MetaheuristicsTS for GCP

Design choices:

Neighborhood exploration:

no reduction

min-conflict heuristic

Prohibition power for move = <v,new_c,old_c>

<v,-,->

<v,-,old_c>

<v,new_c,old_c>, <v,old_c,new_c>

Tabu list dynamics:

Interval: tt ∈ [tb, tb + w]

Adaptive: tt = bα · csc+ RandU(0, tb)

21

Metaheuristics
Population Based MetaheuristicsProbabilistic Iterative Improv.

Key idea: Accept worsening steps with probability that depends
on respective deterioration in evaluation function value:
bigger deterioration ∼= smaller probability

Realization:

Function p(f , s): determines probability distribution
over neighbors of s based on their values under
evaluation function f .
Let step(s, s ′) := p(f , s, s ′).

Note:

Behavior of PII crucially depends on choice of p.
II and RII are special cases of PII.

26

Metaheuristics
Population Based Metaheuristics

Example: Metropolis PII for the TSP

Search space S : set of all Hamiltonian cycles in given graph G .
Solution set: same as S
Neighborhood relation N (s): 2-edge-exchange
Initialization: an Hamiltonian cycle uniformly at random.
Step function: implemented as 2-stage process:

1. select neighbor s ′ ∈ N(s) uniformly at random;
2. accept as new search position with probability:

p(T , s, s ′) :=

{
1 if f (s ′) ≤ f (s)
exp f (s)−f (s′)

T otherwise

(Metropolis condition), where temperature parameter T controls
likelihood of accepting worsening steps.

Termination: upon exceeding given bound on run-time.

27

Metaheuristics
Population Based Metaheuristics

Inspired by statistical mechanics in matter physics:

candidate solutions ∼= states of physical system
evaluation function ∼= thermodynamic energy
globally optimal solutions ∼= ground states
parameter T ∼= physical temperature

Note: In physical process (e.g., annealing of metals), perfect ground states
are achieved by very slow lowering of temperature.

28

Metaheuristics
Population Based MetaheuristicsSimulated Annealing

Key idea: Vary temperature parameter, i.e., probability of accepting
worsening moves, in Probabilistic Iterative Improvement according to
annealing schedule (aka cooling schedule).

Simulated Annealing (SA):
determine initial candidate solution s
set initial temperature T according to annealing schedule
while termination condition is not satisfied: do

while maintain same temperature T according to annealing schedule do
probabilistically choose a neighbor s ′ of s using proposal mechanism
if s ′ satisfies probabilistic acceptance criterion (depending on T) then

s := s ′

update T according to annealing schedule

29

Metaheuristics
Population Based Metaheuristics

2-stage step function based on
proposal mechanism (often uniform random choice from N(s))
acceptance criterion (often Metropolis condition)

Annealing schedule
(function mapping run-time t onto temperature T (t)):

initial temperature T0

(may depend on properties of given problem instance)
temperature update scheme
(e.g., linear cooling: Ti+1 = T0(1− i/Imax),
geometric cooling: Ti+1 = α · Ti)
number of search steps to be performed at each temperature
(often multiple of neighborhood size)
may be static or dynamic
seek to balance moderate execution time with asymptotic behavior
properties

Termination predicate: often based on acceptance ratio,
i.e., ratio of proposed vs accepted steps or number of idle iterations

30

Metaheuristics
Population Based Metaheuristics

Example: Simulated Annealing for the TSP

Extension of previous PII algorithm for the TSP, with

proposal mechanism: uniform random choice from
2-exchange neighborhood;
acceptance criterion: Metropolis condition (always accept improving
steps, accept worsening steps with probability exp [(f (s)− f (s ′))/T]);
annealing schedule: geometric cooling T := 0.95 · T with n · (n − 1)
steps at each temperature (n = number of vertices in given graph), T0
chosen such that 97% of proposed steps are accepted;
termination: when for five successive temperature values no
improvement in solution quality and acceptance ratio < 2%.

Improvements:

neighborhood pruning (e.g., candidate lists for TSP)
greedy initialization (e.g., by using NNH for the TSP)
low temperature starts (to prevent good initial candidate solutions from
being too easily destroyed by worsening steps)

31

Metaheuristics
Population Based MetaheuristicsProfiling

0.0

0.5

1.0

1.5

2.0

2.5

T
em

pe
ra

tu
re

Run A

0 10 20 30 40 50

0

100

200

300

400

500

600

Iterations 107

C
os

t f
un

ct
io

n
va

lu
e

Run B

0 10 20 30 40 50

Iterations 107

33

Metaheuristics
Population Based MetaheuristicsIterated Local Search

Key Idea: Use two types of LS steps:

subsidiary local search steps for reaching
local optima as efficiently as possible (intensification)

perturbation steps for effectively
escaping from local optima (diversification).

Also: Use acceptance criterion to control diversification vs intensification
behavior.

Iterated Local Search (ILS):
determine initial candidate solution s
perform subsidiary local search on s
while termination criterion is not satisfied do

r := s
perform perturbation on s
perform subsidiary local search on s
based on acceptance criterion,
keep s or revert to s := r

37

Metaheuristics
Population Based Metaheuristics

Note:

Subsidiary local search results in a local minimum.

ILS trajectories can be seen as walks in the space of
local minima of the given evaluation function.

Perturbation phase and acceptance criterion may use aspects of search
history (i.e., limited memory).

In a high-performance ILS algorithm, subsidiary local search,
perturbation mechanism and acceptance criterion need to complement
each other well.

38

Metaheuristics
Population Based Metaheuristics

Subsidiary local search: (1)

More effective subsidiary local search procedures lead to better ILS
performance.
Example: 2-opt vs 3-opt vs LK for TSP.
Often, subsidiary local search = iterative improvement,
but more sophisticated LS methods can be used.
(e.g., Tabu Search).

39

Metaheuristics
Population Based Metaheuristics

Perturbation mechanism: (1)

Needs to be chosen such that its effect cannot be easily undone by
subsequent local search phase.
(Often achieved by search steps larger neighborhood.)
Example: local search = 3-opt, perturbation = 4-exchange steps in ILS
for TSP.
A perturbation phase may consist of one or more
perturbation steps.
Weak perturbation ⇒ short subsequent local search phase; but: risk of
revisiting current local minimum.
Strong perturbation ⇒ more effective escape from local minima; but:
may have similar drawbacks as random restart.
Advanced ILS algorithms may change nature and/or strength of
perturbation adaptively during search.

40

Metaheuristics
Population Based Metaheuristics

Acceptance criteria: (1)

Always accept the best of the two candidate solutions

⇒ ILS performs Iterative Improvement in the space of local optima
reached by subsidiary local search.

Always accept the most recent of the two candidate solutions

⇒ ILS performs random walk in the space of local optima reached by
subsidiary local search.

Intermediate behavior: select between the two candidate solutions based
on the Metropolis criterion (e.g., used in Large Step Markov Chains
[Martin et al., 1991].

Advanced acceptance criteria take into account search history,
e.g., by occasionally reverting to incumbent solution.

41

Metaheuristics
Population Based Metaheuristics

Example: Iterated Local Search for the TSP (1)

Given: TSP instance G .

Search space: Hamiltonian cycles in G .

Subsidiary local search: Lin-Kernighan variable depth search algorithm

Perturbation mechanism:
‘double-bridge move’ = particular 4-exchange step:

A

BC

D

double bridge

move

A

BC

D

Acceptance criterion: Always return the best of the two given
candidate round trips.

42

Metaheuristics
Population Based MetaheuristicsVariable Neighborhood Search

Variable Neighborhood Search is a method based on the systematic change of
the neighborhood during the search.

Central observations

a local minimum w.r.t. one neighborhood function is not necessarily
locally minimal w.r.t. another neighborhood function
a global optimum is locally optimal w.r.t. all neighborhood functions

46

Metaheuristics
Population Based Metaheuristics

Principle: change the neighborhood during the search

Several adaptations of this central principle

(Basic) Variable Neighborhood Descent (VND)

Variable Neighborhood Search (VNS)

Reduced Variable Neighborhood Search (RVNS)

Variable Neighborhood Decomposition Search (VNDS)

Skewed Variable Neighborhood Search (SVNS)

Notation

Nk , k = 1, 2, . . . , km is a set of neighborhood functions

Nk(s) is the set of solutions in the k-th neighborhood of s

47

Metaheuristics
Population Based Metaheuristics

How to generate the various neighborhood functions?

for many problems different neighborhood functions (local searches)
exist / are in use
change parameters of existing local search algorithms
use k-exchange neighborhoods; these can be naturally extended
many neighborhood functions are associated with distance measures; in
this case increase the distance

48

Metaheuristics
Population Based MetaheuristicsBasic Variable Neighborhood Descent

Procedure BVND
input : Nk , k = 1, 2, . . . , kmax , and an initial solution s
output: a local optimum s for Nk , k = 1, 2, . . . , kmax
k ← 1
repeat

s ′ ← FindBestNeighbor(s,Nk)
if f (s ′) < f (s) then

s ← s ′

(k ← 1)
else

k ← k + 1
until k = kmax ;

49

Metaheuristics
Population Based MetaheuristicsVariable Neighborhood Descent

Procedure VND
input : Nk , k = 1, 2, . . . , kmax , and an initial solution s
output: a local optimum s for Nk , k = 1, 2, . . . , kmax
k ← 1
repeat

s ′ ← IterativeImprovement(s,Nk)
if f (s ′) < f (s) then

s ← s ′

k ← 1
else

k ← k + 1
until k = kmax ;

50

Metaheuristics
Population Based Metaheuristics

Final solution is locally optimal w.r.t. all neighborhoods

First improvement may be applied instead of best improvement

Typically, order neighborhoods from smallest to largest

If iterative improvement algorithms IIk , k = 1, . . . , kmax
are available as black-box procedures:

order black-boxes
apply them in the given order
possibly iterate starting from the first one
order chosen by: solution quality and speed

51

Metaheuristics
Population Based MetaheuristicsExample

VND for single-machine total weighted tardiness problem

Candidate solutions are permutations of job indexes
Two neighborhoods: swap and insert
Influence of different starting heuristics also considered

initial swap insert swap+insert insert+swap
solution ∆avg tavg ∆avg tavg ∆avg tavg ∆avg tavg
EDD 0.62 0.140 1.19 0.64 0.24 0.20 0.47 0.67
MDD 0.65 0.078 1.31 0.77 0.40 0.14 0.44 0.79

∆avg deviation from best-known solutions, averaged over 100 instances

52

Metaheuristics
Population Based MetaheuristicsBasic Variable Neighborhood Search

Procedure BVNS
input : Nk , k = 1, 2, . . . , kmax , and an initial solution s
output: a local optimum s for Nk , k = 1, 2, . . . , kmax
repeat

k ← 1
repeat

s ′ ← RandomPicking(s,Nk)
s ′′ ← IterativeImprovement(s ′,Nk)
if f (s ′′) < f (s) then

s ← s ′′

k ← 1
else

k ← k + 1
until k = kmax ;

until Termination Condition ;

53

Metaheuristics
Population Based Metaheuristics

To decide:
which neighborhoods
how many
which order
which change strategy

Extended version: parameters kmin and kstep; set k ← kmin and increase
by kstep if no better solution is found (achieves diversification)

54

Metaheuristics
Population Based MetaheuristicsExtensions (1)

Reduced Variable Neighborhood Search (RVNS)

same as VNS except that no IterativeImprovement procedure is applied

only explores different neighborhoods randomly

can be faster than standard local search algorithms for reaching good
quality solutions

55

Metaheuristics
Population Based MetaheuristicsExtensions (2)

Variable Neighborhood Decomposition Search (VNDS)
same as in VNS but in IterativeImprovement all solution components are
kept fixed except k randomly chosen
IterativeImprovement is applied on the k unfixed components

IterativeImprovement can be substituted by exhaustive search up to a
maximum size b (parameter) of the problem

56

Metaheuristics
Population Based MetaheuristicsExtensions (3)

Skewed Variable Neighborhood Search (SVNS)

Derived from VNS
Accept s ← s ′′ when s ′′ is worse

according to some probability

skewed VNS: accept if

g(s ′′)− α · d(s, s ′′) < g(s)

d(s, s ′′) measure the distance between solutions

(underlying idea: avoiding degeneration to multi-start)

57

Metaheuristics
Population Based MetaheuristicsGuided Local Search

Key Idea: Modify the evaluation function whenever
a local optimum is encountered.
Associate weights (penalties) with solution components; these determine
impact of components on evaluation function value.
Perform Iterative Improvement; when in local minimum, increase
penalties of some solution components until improving steps become
available.

Guided Local Search (GLS):
determine initial candidate solution s
initialize penalties
while termination criterion is not satisfied do

compute modified evaluation function g ′ from g
based on penalties

perform subsidiary local search on s
using evaluation function g ′

update penalties based on s

59

Metaheuristics
Population Based Metaheuristics

Guided Local Search (continued)

Modified evaluation function:

g ′(π, s) := g(π, s) +
∑

i∈SC(π′,s)

penalty(i),

where SC (π′, s) is the set of solution components
of problem instance π′ used in candidate solution s.

Penalty initialization: For all i : penalty(i) := 0.

Penalty update in local minimum s: Typically involves penalty increase
of some or all solution components of s; often also occasional penalty
decrease or penalty smoothing.

Subsidiary local search: Often Iterative Improvement.

60

Metaheuristics
Population Based Metaheuristics

Potential problem:

Solution components required for (optimal) solution
may also be present in many local minima.

Possible solutions:

A: Occasional decreases/smoothing of penalties.
B: Only increase penalties of solution components that are

least likely to occur in (optimal) solutions.

Implementation of B:
Only increase penalties of solution components i with maximal utility
[Voudouris and Tsang, 1995]:

util(s ′, i) :=
gi (π, s ′)

1 + penalty(i)

where gi (π, s ′) is the solution quality contribution of i in s ′.
61

Metaheuristics
Population Based Metaheuristics

Example: Guided Local Search (GLS) for the TSP

[Voudouris and Tsang 1995; 1999]

Given: TSP instance G
Search space: Hamiltonian cycles in G with n vertices;
Neighborhood: 2-edge-exchange;

Solution components edges of G ;
ge(G , p) := w(e);

Penalty initialization: Set all edge penalties to zero.

Subsidiary local search: Iterative First Improvement.

Penalty update: Increment penalties for all edges with maximal utility
by

λ := 0.3 · w(s2-opt)

n

where s2-opt = 2-optimal tour.
62

Metaheuristics
Population Based MetaheuristicsLagrangian Method

Change the objective function bringing constraints gi into it

L(~s, ~λ) = f (~s) +
∑

i

λigi (~s)

λi are continous variables called Lagrangian Multipliers

L(~s∗, λ) ≤ L(~s∗, ~λ∗) ≤ L(~s, ~λ∗)

Alternate optimizations in ~s and in ~λ

63

Metaheuristics
Population Based MetaheuristicsOutline

1. Trajectory Based Metaheuristics
Randomized Iterative Improvement
Tabu Search
Simulated Annealing
Iterated Local Search
Variable Neighborhood Search
Guided Local Search

2. Population Based Metaheuristics
Evolutionary Algorithms

64

Metaheuristics
Population Based MetaheuristicsEvolutionary Algorithms

Key idea (Inspired by Darwinian model of biological evolution): Maintain a
population of individuals that compete for survival, and generate new
individuals, which in turn again compete for survival

Iteratively apply genetic operators mutation, recombination, selection to a
population of candidate solutions.

Mutation introduces random variation in the genetic material of
individuals (unary operator)

Recombination of genetic material during reproduction produces
offspring that combines features inherited from both parents (N-ary
operator)

Differences in evolutionary fitness lead selection of genetic traits
(‘survival of the fittest’).

66

Metaheuristics
Population Based MetaheuristicsTerminology

Individual ⇐⇒ Solution to a problem

Genotype space ⇐⇒ Set of all possible individuals determined by
the solution encoding

Phenotype space ⇐⇒ Set of all possible individuals determined by
the genotypes (ie, the variable–value them-
selves)

Population ⇐⇒ Set of candidate solutions

Chromosome ⇐⇒ Representation for a solution (e.g., set of pa-
rameters)

Fitness ⇐⇒ Quality of a solution

Gene and Allele ⇐⇒ Part and value of the representation of a so-
lution (e.g., parameter or degree of freedom)

Crossover Mutation ⇐⇒ Search Operators

Natural Selection ⇐⇒ Promoting the reuse of good solutions

67

Metaheuristics
Population Based MetaheuristicsOriginal Streams

Evolutionary Programming [Fogel et al. 1966]:
mainly used in continuous optimization
typically does not make use of recombination and uses stochastic
selection based on tournament mechanisms.
often seeks to adapt the program to the problem rather than the solutions

Evolution Strategies [Rechenberg, 1973; Schwefel, 1981]:
similar to Evolution Programming (developed independently)
originally developed for (continuous) numerical optimization problems;
operate on more natural representations of candidate solutions;
use self-adaptation of perturbation strength achieved by mutation;
typically use elitist deterministic selection.

Genetic Algorithms (GAs) [Holland, 1975; Goldberg, 1989]:
mostly for discrete optimization;
often encode candidate solutions as bit strings of fixed length, (which is
now known to be disadvantageous for combinatorial problems such as the
TSP).

68

Metaheuristics
Population Based Metaheuristics

Evolutionary Algorithm (EA):
determine initial population sp

while termination criterion is not satisfied: do
generate set spr of new candidate solutions
by recombination

generate set spm of new candidate solutions
from spr and sp by mutation

select new population sp from
candidate solutions in sp, spr, and spm

69

Metaheuristics
Population Based Metaheuristics

70

Metaheuristics
Population Based Metaheuristics

Problem: Pure evolutionary algorithms often lack
capability of sufficient search intensification.

Solution: Apply subsidiary local search after initialization, mutation and
recombination.

Memetic Algorithms [Dawkins, 1997, Moscato, 1989]

transmission of memes, mimicking cultural evolution which is supposed
to be direct and Lamarckian
(aka Genetic/Evolutionary Local Search, or Hybrid Evolutionary
Algorithms if more involved local search including other metaheuristics,
eg, tabu search)

71

Metaheuristics
Population Based Metaheuristics

Memetic Algorithm (MA):
determine initial population sp
perform subsidiary local search on sp
while termination criterion is not satisfied: do

generate set spr of new candidate solutions
by recombination

perform subsidiary local search on spr
generate set spm of new candidate solutions
from spr and sp by mutation

perform subsidiary local search on spm
select new population sp from
candidate solutions in sp, spr, and spm

72

Metaheuristics
Population Based MetaheuristicsSolution representation

Separation between solution encode/representation (genotype) from actual
solution (phenotype)

Example

genotype set made of strings of length l whose elements are symbols
from an alphabet A ⇒ set of all individuals Al

the elements of strings are the genes
the values that each element can take are the alleles

the search space is X ⊆ Al ,

if the strings are member of a population they are called chromosomes
and their recombination crossover

an expression maps individual to solutions (phenotypes) c : Al 7→ S

strings are evaluated by f (c(x)) = g(x) which gives them a fitness

73

Metaheuristics
Population Based Metaheuristics

Example

Note: binary representation is appealing but not always good (in constrained
problems binary crossovers might not be good)

74

Metaheuristics
Population Based Metaheuristics

Conjectures on the goodness of EA

schema: subset of Al where strings have a set of variables fixed.
Ex.: 1 * * 1

exploit intrinsic parallelism of schemata

Schema Theorem:

E [N(S , t + 1)] ≥ F (S , t)

F̄ (S)
N(s, t)[1− ε(S , t)]

a method for solving all problems ⇒ disproved by
No Free Lunch Theorems

building block hypothesis

75

Metaheuristics
Population Based MetaheuristicsInitial Population

Which size? Trade-off

Minimum size: connectivity by recombination is achieved if at least one
instance of every allele is guaranteed to be present at each gene. Ex: if
binary:

P∗2 = (1− (0.5)M−1)l

for l = 50, it is sufficient M = 17 to guarantee P∗2 > 99.9%.

Generation: often, independent, uninformed random picking from
given search space.

Attempt to cover at best the search space, eg, Latin hypercube,
Quasi-random (low-discrepancy) methods (Quasi-Monte Carlo method).

But: can also use multiple runs of construction heuristic.

76

Metaheuristics
Population Based MetaheuristicsSelection

Main idea: selection should be related to fitness

Fitness proportionate selection (Roulette-wheel method)

pi =
fi∑
j fj

Tournament selection: a set of chromosomes is chosen and compared
and the best chromosomes chosen.

Rank based and selection pressure

Fitness sharing (aka niching): probability of selection proportional to the
number of other individuals in the same region of the search space.

77

Metaheuristics
Population Based Metaheuristics

Recombination (Crossover)

Binary or assignment representations
one-point, two-point, m-point (preference to positional bias
w.r.t. distributional bias)
uniform cross over
(through a mask controlled by
a Bernoulli parameter p)

Permutations
Partially mapped crossover (PMX)
Mask based crossover
Order crossover (OX)
Cycle crossover (CX)

Sets
greedy partition crossover (GPX)

Real vectors

arithmetic crossovers
k-point crossover

78

Metaheuristics
Population Based Metaheuristics

Example: crossovers for binary representations

79

Metaheuristics
Population Based Metaheuristics

Crossovers appear to be a crucial feature of success

Therefore, more commonly: ad hoc crossovers

Two off-springs are generally generated

Crossover rate controls the application of the crossover. May be
adaptive: high at the start and low when convergence

80

Metaheuristics
Population Based MetaheuristicsMutation

Goal: Introduce relatively small perturbations in candidate solutions in
current population + offsprings obtained from recombination

Typically, perturbations are applied stochastically and independently to
each candidate solution

Mutation rate controls the application of bit-wise mutations.
It may be adaptive: low at the start and high when convergence

Possible implementation through Poisson variable which determines the
m genes which are likely to change allele.

Can also use subsidiary selection function to determine subset of
candidate solutions to which mutation is applied.

With real vector representation: Gaussian mutation

81

Metaheuristics
Population Based MetaheuristicsSubsidiary local search

Often useful and necessary for obtaining high-quality candidate solutions.

Typically consists of selecting some or all individuals in
the given population and applying an iterative improvement procedure to
each element of this set independently.

82

Metaheuristics
Population Based MetaheuristicsNew Population

Determines population for next cycle (generation) of the algorithm by
selecting individual candidate solutions from

current population +
new candidate solutions from recombination, mutation
(and subsidiary local search).

Generational Replacement (λ, µ): λ← µ

Elitist strategy (λ+ µ) the best candidates are always selected

Steady state (most common) only a small number of least fit individuals
is replaced

Goal: Obtain population of high-quality solutions while maintaining
population diversity.

Survival of the fittest and maintenance of diversity (duplicates avoided)

83

Metaheuristics
Population Based Metaheuristics

84

Metaheuristics
Population Based MetaheuristicsExample

A memetic algorithm for TSP

Search space: set of Hamiltonian cycles
Tours represented as permutations of vertex indexes.

Initialization: by randomized greedy heuristic (partial tour of n/4
vertices constructed randomly before completing with greedy).

Recombination: greedy recombination operator GX applied to n/2
pairs of tours chosen randomly:
1) copy common edges (param. pe)
2) add new short edges (param. pn)
3) copy edges from parents ordered by increasing length (param. pc)
4) complete using randomized greedy.

Subsidiary local search: LK variant.

Mutation: apply double-bridge to tours chosen uniformly at random.

Selection: Selects the µ best tours from current population of µ+ λ
tours (=simple elitist selection mechanism).

Restart operator: whenever average bond distance in the population
falls below 10.

85

