Prepare exercises 1.3, 1.11, 1.14, 1.24, 3.8 from book [B1] of the course literature and the exercises below for discussion in class on Wednsday 13th April 2011.
[Wait Monday’s lecture to approach exercises 3.8 and 1 below.]
Exercise 1
Suppose that a fair-looking coin is tossed three times and lands heads each time. Show that a classical maximum likelihood estimate of the probability of landing heads would give 1, implying that all future tosses will land heads. By contrast, show that a Bayesian approach with a prior of 0.5 for the probability of heads would lead to a much less extreme conclusion on the posterior probability of observing heads.
Exercise 2. Linear Regression and k nearest neighbor The files
q2x.dat
and
q2y.dat
contain the inputs (x(i)) and outputs (y(i)) for a regression problem,
with one training example per row.
lm
function) and plot on the same figure the data and the
straight line resulting from your fit (in R, plot the points and then
pass the fitted linear model to abline
). Compare your result
with the implementation via the sequential gradient algorithm from the
past exercise sheet. (Remember to include the intercept term.)knn.reg
). Use some randomly
chosen x values as test points. Plot the training and predicted
points for k=3. Further, show graphically the behavior of the
square error as k increases from k=0 to the size of the training
set that you decided.