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Exercise 1 Bayesian prediction.

(a) Let 6 ~ Dir(a). Consider multinomial random variables (X1, Xa, ..., Xx), where X;, ~
Mult(6) for each n, and where the X, are assumed conditionally independent given
6. Now consider a random variable Xye, ~ Mult(0) that is assumed conditionally
independent of (X1, Xp,..., Xy) given 0. Compute the predictive distribution:

p(xnew|x1/ X2,.+«, XNy, 0()

by integrating over 6.
Solution: The exercise refers to the theory developed in sec. 2.1 and 2.2 of [B1].

With multinomial distributions we consider the representation in which X; is a random
vector consisting of all 0’s and a single 1. For example, ¥ = (0,0, 1,0, O,O)T. If we
denote p(xx = 1) = 6 then X; ~ Mult(6) corresponds to saying:

K
p(x(6) = [T67 (1)
k=1

and 6 = (0y,...,0x)T. This distribution is also known as generalized Bernoulli distri-
bution.

Consequently, the likelihood for the training set (X1, X»,..., Xy) of independent ob-
servations is:
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where we let [ be the total number of x; that belong to class k. The prior distribtuion
of ® is

F(DC()) ﬁ thkfl
[(ay)---T(ak) ol k

with 0 < 6y < 1, Y3460 = 1, & = (ay,...,ax)” and ag = Y, a;. The Dirichlet
distribution is constructed with the aim of satisfying the conjugacy property. The
fraction in front of the product is the normalizing coefficient derived from:

Dir(8]a) =
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The expected value for the kth component of the random variable O is

©
E[0] = 07’(;
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From Bayes’ Theorem

Rl

K
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=1
The posterior takes again the form of a Dirichlet distribution (conjugacy property)
and comparing with the definition of the Dirichlet distribution above we can determine
the normalization coefficients as

=, N o -~ R r(“o +m e+l —1
p(0|%,...,%N) = Dir(0|a +1) = Tl + 1)~ T(ax £15) | HG (4)
with T: (ll,. . .,lK)T.

To evaluate the predictive distribution of a new outcome we use the sum and product
rules of probability
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From (1) and (4) we have
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where k is chosen such that X, = 1.

Redo the problem in part (a), replacing the multinomial distribution with an arbitrary
exponential family distribution, and the Dirichlet distribution with the correspond-
ing exponential family conjugate distribution. You are to show that in general the
predictive probability p(Xpew|X1, X2,...,XN) is a ratio of normalizers.

Solution: The exercise refers to the theory developed in sec. 2.4 and 2.4.2 of [B1].
Here we use a slightly different notation.

We first write out the likelihood for an arbitrary exponential family to find the form
of the conjugate prior.

plxi,....xnly) = (Hh(xj)> g(m)" exp (ﬂTZu(xj)>
j j
= (Hh(xj)> exp< ZT xj) —mA( ))
]
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where we rewrote the exponential distribution in slightly different terms than we saw
at lecture with exp{—mA(n)} =g¢(y)" and T = u.

The conjugate family of priors has the same “form” as the likelihood to ensure that
the posterior remains in the family of priors. Thus, for conjugate prior we use

Tlno) exp (’7TT - noA(n))

7

plale,m0) = 5

where Z(T,ng) is a normalizing function

Z(xm0) & [exp (17— moAWm)) dy

Then,
p(xi .o xm|T,m0) = /P(xlf---/xm|’7)P(’7|T)d’7

-/ (ﬁh(m) exp (WT (T+ iﬂ@) - (m+”0)A(77)> dy
i

=1
= <ﬁh(xj)> Z <T+ 3 T(xj),m+no>
=1 =1

Similarly

m m
P(Xnews X1, X |T,10) = | W(xpew) [ [H(x7) | Z | T+ T(xnew) + Y T(x;),m+n9 +1
j=1 =1

The predictive probability is then, from product rule,

p(Xnew, X1, - -+, Xm|T)
p(x1,..., %m|T)

(o) T 1)) Z (T4 T(ew) + Kty T(x7),m -+ 1o +1)
(I 1(x))) Z (7 + Xt 7))
z (r + T(Xnew) + Ty T(x;), m + 1o + 1)
Z (T4 S T(), m 4o

pP(Xpew|X1, -+, Xm, T) =

= h(xnew)

Exercise 2 Classification. The course website contains a data set of (x,, y, ) pairs,
where the x, are 2-dimensional vectors and y, is a binary label.

(a) Plot the data, using 0’s and X’s for the two classes. The plots in the following parts
should be plotted on top of this plot.

Solution
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> D <- read.table("classification.dat")

> #plot (min(D$V1) :max (D$V1) ,min(D$V1) :max (D$V1) ,type="n")
> plot(range(D$V1),range (D$V2),type="n")

> text (D$V1,D$V2,D$V3)
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1111
T T T
-15 -10 -5 0
range(D$V1)

Alternatively, with the lattice package (always explore the possibilities of the new functions
you encounter via example).

> require(lattice)
> print(
xyplot (V1~V2,groups=V3,
data=D,pch=c(1,4))
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(b) Write a program to fit a logistic regression model using stochastic gradient ascent.
Plot the line where the logistic function is equal to 0.5. Compare this outcome with
the result attained using the glm function in R (check example in predict.glm).

Solution
The line that corresponds to p = 0.5:

Let’s investigate why we obtain two curves. Let’s try to plot the linear discriminant
in implicit form

Hence, in the previous plot the two lines where due to a discontinuity of the function
that was linked by a line (ie, from —oo to o).
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Response

0.2 —

0.0 —

reslogit <- glm(V3 ~ V1*V2, data=D, family=binomial(link="logit"))
summary (reslogit)

components of the resulting object reslogit:
reslogit$coefficients: estimated regression coefficients
reslogit$fitted.values: estimated success probabilities
reslogit$residuals: residuals

reslogit$linear.predictors: the linear predictor bO+bl*x1+b2*x2

's plot at a fixed value 0.8 for V2

seq(-15,2,.2)

-0.8
reslogit$coefficients[1]+reslogit$coefficients[2]*x1+reslogit$coefficients[3]*x2+
exp(1p)/(1+exp(1p))

plot (D$V1,D$V3,x1im=c(-15,2),ylim=c(0,1) ,xlab="V1",ylab="Response")
lines(x1,pr,lty=1)
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0.4 —

-15 -10 -5 0

V1
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> theta <- reslogit$coefficients

> plot (range (D$V1) ,range (D$V2),type="n")

> text (D$V1,D$V2,D$V3)

> matlines(x <- seq(-15,2,.2), (-theta[2]*x-theta[1])/(theta[3]+theta[4]*x),lwd=1)
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range(D$V1)
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> x1 <- seq(-32,32,.2)
> x2 <- seq(-24,24,.2)
> f <- function(x,y) {

apply(as.matrix(cbind(x,y)),1,

function (1) theta/*)c(1,1[1],1[2],1[1]1*1[2]))

}
> zs <- outer(x1,x2,FUN=f)
> contour (x1,x2,zs,levels=0)
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(c) Fit a linear regression to the problem, treating the class labels as real values 0 and 1.
(You can solve the linear regression in any way you like, including solving the normal
equations, using the LMS algorithm, or calling the built-in 1m routine in R). Plot the
line where the linear regression function is equal to 0.5.

Solution
> reslm <- Im(V3 ~ V1x%V2, data=D)
> summary (reslm)
> theta <- reslm$coefficients
> plot(range(D$V1) ,range (D$V2),type="n")
> text(D$V1,D$V2,D$V3)
> matlines(x <- seq(-15,2,.2),(0.5-thetal[2]*x-theta[1])/(theta[3]+theta[4]),lwd=1)
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> x1 <- seq(-32,32,.2)
> x2 <- seq(-24,24,.2)
> f <- function(x,y) {

apply(as.matrix(cbind(x,y)),1,

function (1) theta/*)c(1,1[1],1[2],1[1]1*1[2]))

}
> zs <- outer(x1,x2,FUN=f)
> contour (x1,x2,zs,levels=0.5)
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(d) The data set is a separate data set generated from the same source. Test your fits
from parts (b), (c), and (d) on these data and compare the results.
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