
Department of Mathematics and Computer Science
University of Southern Denmark, Odense

March 4, 2011

Marco Chiarandini

DM826 - Modeling and Solving Constrained
Optimization Problems

Obligatory Assignment 2, Spring 2011

Deadline: 18th March 2011 at noon.

The first two exercises were posed at the Summer School on Constraint Programming or-
ganized in Aussois, France by the Association for Constraint Programming (May, 2010).

1 The Aircraft Scheduling problem

The CP model below is from an Aircraft Scheduling problem consisting in scheduling
the landing time of planes in an airport.

1 import cotfd;

2

3 int NB_PLANES = 30 // number of planes

4 range Planes = 1..NB_PLANES; // plane range

5 range Time = 1..1000; // time range

6 int preferredTime[Planes] = ...; // preferred landing time of each plane

7 int forbiddenPeriod[Planes] = ...; // period during which the runway stays

unavailable

8 int delayCost[Planes] = ...; // the earliness/tardiness cost

9

10 Solver<CP> cp(); // solver

11 var<CP>{int} time[Planes](cp,Time); // decision variable

12 var<CP>{int} costPlane[Planes](cp,0..100000); // cost for each plane

13 var<CP>{int} cost(cp,0..100000); // total cost

14

15 int startTime = System.getCPUTime();

16 minimize<cp>

17 cost

18 subject to {

19 forall (p in Planes) {

20 forall (p2 in Planes : p != p2) {

21 cp.post(time[p2] >= time[p] + forbiddenPeriod[p] || time[p2]+

forbiddenPeriod[p2] <= time[p]);

22 }

23 cp.post(costPlane[p] == (abs(preferredTime[p] - time[p]) * delayCost[p]));

24 }

25 cp.post(cost == sum(p in Planes) costPlane[p]);

26 } using {

27 labelFF(time);

28 }

1. Write a 5 line description of the model (lines 16-25).

1

DM826 – Spring 2011 Assignment Sheet

2. Execute the program on the instance provided at http://www.imada.sdu.dk/~marco/
DM826/Resources/Assignment2.

The search is very inefficient because the values are considered in increasing order
from 0. This can be very far from the optimal solution. Change the search strategy
using a forall selecting the variables and a tryall selecting the values.

Compare it with the previous search strategy on the number of failures, the num-
ber of branchings and the execution time.

2 The 0–1 knapsack problem

Given a set of n objects of weight wi and usefulness ai (1 ≤ i ≤ n), select a subset
maximizing the usefulness ∑n

i=1 xiai such that the capacity b of the backpack is not
exceeded (∑n

i=1 xiwi ≤ b).

2.1 A Branch and Bound approach

The most efficient algorithms for knapsack problems are dynamic programming algo-
rithms. However we will focus here on solving the problem by branch and bound.
Compare the computing time, the number of failures and the number of branchings of
the models from the following points.

1. A model is given in the file knapsack.co, using the labelFF heuristic. Modify it in
a way such that the program searches for the best solution.

2. Substitute the constraints with global constraints

3. Implement an effective search strategies for the selection of the next variable to
assign when searching for this problem.

4. Optimization by iterations Now you will solve this problem by iterations. This
means you will first consider the feasibility problem: does there exist a solution to
the knapsack problem with at least a given usefulness u? Then you will use this
version of the problem for different u’s until you know there is no better solution
than the ones you have already found. The simplest strategy is to first compute an
upper bound ub on the usefulness of the optimal solution. The search begins with
u = ub and is restarted with a decreased u while no solution is found. An upper
bound function is provided in knapsack.co.

In Comet: To implement optimization by iteration in COMET consider the follow-
ing procedure:

• Add an Integer u to your program and modify the code so that the CP
engine will search for a solution having at least the cost of the value stored in
u. Do it by adding a constraint that binds the sum of the usefulness of the
selected items to a variable v and label this variable to the value of u at the
beginning of the using block. Do not put the constraint totalUsefulness ==

u in the solve block so that we can restart the solver (this means restarting the
search without any change to the constraints) without creating a new solver.
This is more efficient.

2

DM826 – Spring 2011 Assignment Sheet

• Use the onCompletion() event to decrease the value of u by one. This event
is triggered when the search has completed and no solution has been found.
Use the onFeasibleSolution(Solution) event to stop the search as soon as
a solution is found.

1 whenever cp.getSearchController()@onCompletion() {

2 u := u - 1;

3 cp.reStart();

4 }

5 whenever cp.getSearchController()@onFeasibleSolution(Solution s) {

6 cout << "Solution : " << totalUsefulness.getSnapshot(s) << endl;

7 cp.exit();

8 }

5. Optimization by iterations and dichotomic search if the upper bound is far from
the optimal solution, the CP solver will spend much time searching for solutions
with very high usefulness that do not exist.

So we want to decrease u faster while preserving completeness. We can do that
by modifying u dichotomically. We compute a lower bound lb and an upper
bound ub of the usefulness of the optimal solution. Then we search for a solution
having a usefulness c ≥ d lb+ub

2 e. If such a solution exists, then we update lb to the
usefulness of the solution and loop. Otherwise u is a strict upper bound on the
cost of the optimal solution; we update ub := b lb+ub

2 − 1c and loop. We stop when
lb = ub. At any point in time we have that s∗ ∈ [lb; ub] (s∗ is the optimal solution
of the problem).

In Comet:

• Create two Integer ub and lb. Initialize ub using the upper bound algorithm
and lb using the given lower bound algorithm.

• Use the events onCompletion() and onFeasibleSolution(Solution) to up-
date the value of ub and lb accordingly.

3 Logical constraints in CP and IP

Consider the following CSP:

P = 〈X ≡ (x1, x2, x3),DE ≡ {D(x1) = {0, 1}, D(x2) = {0, 1}, D(x3) = [−2..2]},
C ≡ {(x1 ∨ x2)⇒ (x3 ≥ 0)}〉

1. In CP. Which is the arity of the constraint? How can arc consistency be enforced?
Is it arc consistent? Which level of arc consistency does it satisfy?

2. In IP. Rewrite the constraint in a form that can be handled by IP solvers.

3

