

Constraint Programming with COMET

Laurent Michel
Pascal Van Hentenryck

Idm@engr.uconn.edu pvh@cs.brown.edu

Overview

- The COMET Platform
- Core Language
- The CP Solver
 - Declarative Model
 - Search Procedures
- Demo

COMET

An optimization platform

- Constraint-based Local Search (CBLS)
- Constraint Programming (CP)
- Mathematical programming (MP)

Availability

•Windows 32

•MacOS 32/64

•Linux 32/64

Integrating Code with COMET

- Options available
 - Extend COMET in COMET
 - User defined constraints (in CBLS and FD)
 - Extend COMET in C++
 - Call your C++ code from COMET. Plugin architecture.
 - Embed COMET in C++
 - Call COMET from C++

Integrating Data Sources with COMET

- Database connectivity
 - •ODBC 2.0 (on all platforms)
- Data files
 - XML reading/writing

User Interface with COMET

- Version 1.2 (and earlier)
 - Cocoa visualization on MacOS
 - Gtk visualization on Linux
 - Nothing on windows

- •Version 1.3 (or 2.0...)
 - QT-based visualization
 - •On all platforms!

Writing COMET programs?

- On version 1.2
 - Development Studio on MacOS
 - Emacs + command line on Linux
 - Emacs + command line on Windows
- •On version 1.3 (or 2.0...)
 - Development Studio with QT on all platforms

Debugging COMET programs?

- On version 1.2
 - Alpha version of a GUI debugger on Linux (GTK)
 - Alpha version of a GUI debugger on MacOS (Cocoa)
 - Alpha version of a text debugger on windows
- •On version 1.3 (or 2.0...)
 - GUI debugger on all platforms (QT again!)

Modeling with COMET

Modeling power

- High level models for CBLS and CP
- rich language of constraints and objectives
- vertical extensions

Solving with COMET

- Search
 - •a unique search language for CBLS, CP, MP
- Hybridization
 - Solvers are first-class objects

Hybrids 1

- Two LP/MIP Solvers
 - lpsolve
 - •coin-Clp
- Techniques supported through model composition
 - Model chaining
 - Column generation
 - Benders decomposition

Hybrids 2

- •Combine CP + LS
 - LS for high-quality solutions quickly (and speed up the CP proof)
 - CP for optimality proof completeness
- •Composition?
 - Sequential
 - Parallel
- •Communication?
 - Bounds
 - Actual solution, frequencies,

Architecture

Loadable plugins

Core Language

- •Similar to C++ or Java
 - Statically typed
 - Strongly typed
- Abstractions
 - Classes
 - Interfaces
- Control
 - All the usual gizmos
 - Additional looping / branching construction

Workflow

Workflow

_
—
_
—
_

Workflow

Source Organization

Interface
Class
Function

Source Organization

Source Organization

Basic Language support

- You can define
 - Classes
 - Functions
 - Interfaces
- All the traditional C++/Java like statements
- Parameter passing is by value
 - Integer, Float, Boolean classes like in Java
- •10
 - stream-based (cin/cout) like in C++

Data support

- Data support
 - array, matrices, sets, stack, queues, dictionaries
- Expressions
 - Rich expression language with aggregates for arithmetic and sets

```
int x = sum(i in R) x[i];
int y = prod(i in R) x[i];
set{int} a = setof(i in R) (x[i]i%2==0);
set{int} b = collect(i in R) x[i];
```

Slicing

```
int mx[i in 1..10,j in 1..10] = i * 10 + j;
int []col3 = all(i in 1..10) mx[i,3];
int []row4 = all(i in 1..10) mx[4,i];
int []diag = all(i in 1..10) mx[i,i];
```


- Basic
- With ordering

```
forall(i in S)
  BLOCK

forall(i in S : p(i))
  BLOCK

forall(i in S : p(i)) by (f(i))
  BLOCK
```


Extra Control: Branching - Selectors

- Randomized, Minimum, Maximum
- Semi-greedy

```
select(i in S)
 BLOCK
selectMin(i in S)(f(i))
 BLOCK
selectMax(i in S)(f(i))
 BLOCK
selectMin[k](i in S)(f(i))
 BLOCK
selectMax[k](i in S)(f(i))
 BLOCK
```

```
select(i in S : p(i))
 BLOCK
selectMin(i in S : p(i))(f(i))
 BLOCK
selectMax(i in S : p(i))(f(i))
 BLOCK
selectMin[k](i in S : p(i))(f(i))
 BLOCK
selectMax[k](i in S : p(i))(f(i))
 BLOCK
```


Extra Control: Branching - Selectors

- Randomized, Minimum, Maximum
- Semi-greedy

```
select(i in S)
                             select(i in S : p(i))
 BLOCK
                               BLOCK
                           | | selectMin(i in S : p(i))(f(i))
selectMin(i in S)(f(i))
 BL
              Tie-break Broken uniformly at random
     Semi-greedy Selectors respect probability distributions
 BLOCK
                               REUCK
selectMin[k](i in S)(f(i))
                             selectMin[k](i in S : p(i))(f(i))
 BLOCK
                               BLOCK
selectMax[k](i in S)(f(i))
                             selectMax[k](i in S : p(i))(f(i))
                               BLOCK
 BLOCK
```

- Let us express choices
 - Binary

```
try<c>
BLOCK<sub>1</sub>
I BLOCK<sub>2</sub>
I BLOCK<sub>3</sub>
...
```


Extra Control: Non-determinism

- Let us express choices
 - N-ary
 - Branches given by set S

tryall<c>(i in S)
BLOCK

Extra Control: Non-determinism

- Let us express choices
 - N-ary
 - Branches given by subset of S satisfying p(i)

$$S = \{v_0, v_1, \dots, v_n\}$$

$$S' = \{i \in S \text{ s.t. } p(i)\}$$

$$v_0 \quad v_1 \quad v_2 \quad v_k$$

$$\vdots$$

Extra Control: Non-determinism

Let us express choices

- N-ary
- Consider choices in order of increasing f(i)

$$S = \{v_0, v_1, ..., v_n\}$$

$$S' \!\!=\!\! \{i \in S \text{ s.t. } p(i)\} \text{ , } ISI = k$$

$$\pi = permutation(0..k-1)$$

s.t. $i \le j \Rightarrow f(\pi(i)) \le f(\pi(j))$

- Let us express choices
 - N-ary

```
tryall<c>(i in S : p(i)) by (f(i))
  BLOCK
onFailure BLOCK2
```

- Adds ability to
 - Execute BLOCK2 when there is a failure
 - Before trying the next choice....

Operationally

- Compute a fixpoint of the constraint set
 - Reason on each constraint C locally
 - For every variable X appearing in C: prune D(x)
 - Propagate the impact to other constraints using X
 - Stop when no more changes

Outcomes ?

Solvers

- Computational Model embedded in a solver
- Comet supports several solvers

```
import cotfd;
Solver<CP> cp();
```

```
import cotln;
Solver<LP> lp();
Solver<MIP> ip();
```

```
import cotls;
Solver<LS> ls();
```

Importing =
Loading a shared library +
defining all the interfaces +
defining all the classes

Solvers

- Computational Model embedded in a solver
- Comet supports several solvers

```
import cotfd;
Solver<CP> cp();
```

```
import cotln;
Solver<LP> lp();
Solver<MIP> ip();
```

```
import cotls;
Solver<LS> ls();
```

Importing =
Loading a shared library +
defining all the interfaces +
defining all the classes

Variables

- Variables are declared for a specific Solver
- For finite domain
 - Domain can be a range or a set.

Declarative Model

Model states

- The nature of the problem
 - Constraint Satisfaction Problem
 - Find one solution
 - Find all solution
 - Constraint Optimization Problem
 - Find one global solution.
 - Prove optimality
- the constraints
 - Arithmetic / Logical / Combinatorial

CSP vs. COP

CSP

```
Solver<CP> m();
solve<m> {
} [using BLOCK]
Solver<CP> m();
solveall<m> {
} [using BLOCK]
```

COP

```
Solver<CP> m();
minimize<m> obj
subject to {
} [using BLOCK]
Solver<CP> m();
maximize<m> obj
subject to {
} [using BLOCK]
```

Stating Constraints

- Constraints should be stated directly or indirectly via one of...
 - The "solve" block
 - The "subject to" block
 - The "using" block
- •Rationale...
 - Constraints can fail (prove infeasibility)
 - Constraints posted inside the block trigger backtracking
 - Constraints posted outside these block simply fail
 - •[you must check the status manually]

```
solve<m> {
    m.post(constraint);
}
```


Stating Constraints

- Constraints should be stated directly or indirectly via one of...
 - The "solve" block
 - The "subject to" block
 - The "using" block
- •Rationale...
 - Constraints can fail (prove infeasibility)
 - Constraints posted inside the block trigger backtracking
 - Constraints posted outside these block simply fail
 - •[you must check the status manually]

```
solve<m> {
    m.post(constraint,onDomains);
}
```

Auto,onDomains, onBounds, onValues

Arithmetic Constraints

- Use all the traditional arithmetic operators
 - Binary operators: + * / ^ min max
 - absolute value: abs()
- Use all the relational operators

```
•< <= > >= == !=
```

Element Constraints

Array and matrix indexing

- All combinations are allowed
 - Index an array of constants with a variable [ELEMENT]
 - Index a matrix of constants with variable(s) [Matrix ELEMENT]
 - Index an array of variables with a variable
 - Index a matrix of variables with variables(s)

Logical Constraints

Negation

With the ! operator

m.post(!b);

- Conjunction
 - With the && operator
- m.post((a < b) && (a < d));

- Disjunction
 - •With the || operator

m.post((a < b) | I (a < d));

- Implication
 - With the => operator

 $m.post(a \Rightarrow b);$

Combinatorial Constraints

- The "global" constraints
 - alldifferent
 - cardinalities (at least, at most, exactly)
 - binaryKnapsack, multiKnapsack, binPacking
 - spread, deviation
 - circuit
 - inverse
 - lexleq
 - table
 - sequence
 - scheduling constraints...

•SEND + MORE = MONEY

```
import cotfd;

Solver<CP> m();
range Digits = 0..9;

var<CP>{int} x[1..8](m,Digits);
var<CP>{int} S = x[1];
var<CP>{int} E = x[2];
var<CP>{int} N = x[3];
var<CP>{int} D = x[4];
var<CP>{int} M = x[5];
var<CP>{int} R = x[7];
var<CP>{int} R = x[7];
var<CP>{int} Y = x[8];
```


•SEND + MORE = MONEY

```
import cotfd;

Solver<CP> m();
range Digits = 0..9;

var<CP>{int} x[1..8](m,Digits);
var<CP>{int} S = x[1];
var<CP>{int} E = x[2];
var<CP>{int} N = x[3];
var<CP>{int} D = x[4];
var<CP>{int} M = x[5];
var<CP>{int} CP>{int} C
```


•SEND + MORE = MONEY

```
import cotfd;

Solver<CP> m();
range Digits = 0..9;

var<CP>{int} x[1..8](m,Digits);
var<CP>{int} S = x[1];
var<CP>{int} E = x[2];
var<CP>{int} N = x[3];
var<CP>{int} D = x[4];
var<CP>{int} M = x[5];
var<CP>{int} CP>{int} C
```

Notes

- 1. Solve block
- 2. Default Search
- 3. Arithmetic constraint
- 4. One Combinatorial constraint

Magic series

0 1 2 3 4

- •A serie of length 5 s[2,1,2,0,0]
- Reification (a.k.a. meta-constraint): constraint on constraints

```
import cotfd;
Solver<CP> m();
int n = 20;
range D = 0..n-1;
var<CP>{int} s[D](m,D);
solve<m> {
  forall(k in D)
    m.post(s[k] == sum(i in D) (s[i]==k));
cout << s << endl;</pre>
cout << "#choices = " << m.getNChoice() << endl;</pre>
cout << "#fail = " << m.getNFail() << endl;</pre>
```


Improving the model: Redundant Constraints

Add redundant constraint(s)!

$$\sum_{k \in 0..n-1} s[k] = n \qquad \sum_{k \in 0..n-1} k \cdot s[k] = n \qquad \sum_{k \in 0..n-1} (k-1) \cdot s[k] = 0$$

```
import cotfd;
Solver<CP> m();
int n = 20;
range D = 0..n-1;
var<CP>{int} s[D](m,D);
solve<m> {
   forall(k in D)
      m.post(s[k] == sum(i in D) (s[i]==k));
   m.post(sum(k in D) (k-1)*s[k]==0);
}

cout << s << endl;
cout << "#choices = " << m.getNChoice() << endl;
cout << "#fail = " << m.getNFail() << endl;</pre>
```

Searching!

Purpose

- Write your own search procedure
- Exploit problem semantics for...
 - Variables ordering
 - Value ordering
 - Dynamic symmetry breaking
 - Multi-phase searches
 - Dichotomic branching

•

Search anatomy

- Two pieces
 - Specify a search tree
 - •What does the tree look like?
 - variable ordering
 - value ordering
 - Specify [optional] a search strategy

Example with Queens

Rationale

- Simple problem
- Illustrates the techniques
- Start off with default strategy (DFS)


```
import cotfd;
int t0 = System.getCPUTime();
Solver<CP> m();
int n = 8;
range S = 1..n;
var<CP>{int} q[i in S](m,S);
solve<m> {
   m.post(alldifferent(all(i in S) q[i] + i));
  m.post(alldifferent(all(i in S) q[i] - i));
   m.post(alldifferent(q));
cout << "Time = " << System.getCPUTime() - t0 << endl;</pre>
cout << "#choices = " << m.getNChoice() << endl;</pre>
cout << "#fail = " << m.getNFail() << endl;</pre>
```


Finding all solutions

```
import cotfd;
int t0 = System.getCPUTime();
Solver<CP> m();
int n = 8;
range S = 1..n;
var<CP>{int} q[i in S](m,S);
solveall<m> {
   m.post(alldifferent(all(i in S) q[i] + i));
  m.post(alldifferent(all(i in S) q[i] - i));
   m.post(alldifferent(q));
cout << "Time = " << System.getCPUTime() - t0 << endl;</pre>
cout << "#choices = " << m.getNChoice() << endl;</pre>
cout << "#fail = " << m.getNFail() << endl;</pre>
```


Printing and Counting solutions...

```
import cotfd;
int t0 = System.getCPUTime();
Solver<CP> m();
int n = 8;
range S = 1..n;
var<CP>{int} q[i in S](m,S);
Integer c(0);
solveall<m> {
   m.post(alldifferent(all(i in S) q[i] + i));
   m.post(alldifferent(all(i in S) q[i] - i));
   m.post(alldifferent(q));
} using {
   labelFF(m);
   cout << q << endl;</pre>
   c := c + 1;
cout << "Nb = " << c << endl;</pre>
cout << "Time = " << System.getCPUTime() - t0 << endl;</pre>
cout << "#choices = " << m.getNChoice() << endl;</pre>
cout << "#fail = " << m.getNFail() << endl;</pre>
```

What is labelFF?

- The default search procedure...
 - Implements first-fail principle
 - First the variable with the smallest domain
 - Try values in increasing order
- •Can't we write this ourselves?

Sure!

Let's start with a very naive search...
...and build up!

Static Ordering [a.k.a. the label function]

Simple idea

- Label variables in their "natural" order (order of declaration)
- Try values in increasing order

```
...
} using {
  forall(i in S)
    tryall<m>(v in S)
    m.post(q[i] == v);
}
```

Static Ordering 2

- First improvement
 - •Skip over variables that are already bound!

```
...
} using {
  forall(i in S : !q[i].bound())
    tryall<m>(v in S)
    m.post(q[i] == v);
}
```

Static Ordering 3

Second improvement

•Skip values that are no longer in the domain!

```
...
} using {
  forall(i in S : !q[i].bound())
    tryall<m>(v in S : q[i].member0f(v))
    m.post(q[i] == v);
}
```

Dynamic Ordering

- First consider the variables with the smallest domain
 - Note that this is dynamic, the domain size changes each time!

```
...
} using {
  forall(i in S : !q[i].bound()) by (q[i].getSize())
    tryall<m>(v in S : q[i].memberOf(v))
    m.post(q[i] == v);
}
```

Dynamic Ordering

- Finally...
 - •When we fail, remember that the value is no longer legal!

```
...
} using {
  forall(i in S : !q[i].bound()) by (q[i].getSize())
    tryall<m>(v in S : q[i].memberOf(v))
    m.post(q[i] == v);
    onFailure m.post(q[i]!=v);
}
```

Tweaks...

Use lighter branching method

```
•replace m.post(x[i] == v) by m.label(x[i],v);
```

replace m.post(x[i] != v) by m.diff(x[i],v);

Light api...

Tweaks...

Use lighter branching method

```
    replace m.post(x[i] == v) by m.label(x[i],v);
    replace m.post(x[i]!= v) by m.diff(x[i],v);
```

Light api...

```
class Solver<CP> {
    ...
    Outcome<CP> label(var<CP>{int} x,int v);
    Outcome<CP> diff(var<CP>{int} x,int v);
    Outcome<CP> lthen(var<CP>{int} x,int v);
    Outcome<CP> gthen(var<CP>{int} x,int v);
    Outcome<CP> inside(var<CP>{int} x,set{int} s);
    Outcome<CP> outside(var<CP>{int} x,set{int} s);
    Outcome<CP> outside(var<CP>{int} x,set{int} s);
    ...
```

Final version

- First-fail principle is 4 lines of code.
- •Advantage?
 - You can instrument / modify to your heart's content

```
...
} using {
    forall(i in S : !q[i].bound()) by (q[i].getSize())
        tryall<m>(v in S : q[i].memberOf(v))
        m.label(q[i],v);
        onFailure m.diff(q[i],v);
}
```