Constraint Programming with COMET

Laurent Michel
Pascal Van Hentenryck

Idm@engr.uconn.edu
pvh@cs.brown.edu

Overview

-The COMET Platform
-Core Language
-The CP Solver
-Declarative Model

- Search Procedures
- Demo

COMET

-An optimization platform

- Constraint-based Local Search (CBLS)
- Constraint Programming (CP)
- Mathematical programming (MP)
-Availability
-Windows 32
- MacOS 32/64
-Linux 32/64

Integrating Code with COMET

- Options available
- Extend COMET in COMET
- User defined constraints (in CBLS and FD)
- Extend COMET in C++
- Call your C++ code from COMET. Plugin architecture.
- Embed COMET in C++
- Call COMET from C++

Integrating Data Sources with COMET

- Database connectivity
- ODBC 2.0 (on all platforms)
-Data files
- XML reading/writing

User Interface with COMET

- Version 1.2 (and earlier)
- Cocoa visualization on MacOS
- Gtk visualization on Linux
- Nothing on windows
- Version 1.3 (or 2.0...)
-QT-based visualization
-On all platforms!

Writing COMET programs?

- On version 1.2
-Development Studio on MacOS
-Emacs + command line on Linux
- Emacs + command line on Windows
-On version 1.3 (or 2.0...)
-Development Studio with QT on all platforms

Debugging COMET programs?

- On version 1.2
- Alpha version of a GUI debugger on Linux (GTK)
- Alpha version of a GUI debugger on MacOS (Cocoa)
- Alpha version of a text debugger on windows
-On version 1.3 (or 2.0...)
- GUI debugger on all platforms (QT again!)

Modeling with COMET

- Modeling power
- High level models for CBLS and CP
- rich language of constraints and objectives
- vertical extensions

Solving with COMET

- Search
-a unique search language for CBLS, CP, MP
-Hybridization
- Solvers are first-class objects

Hybrids 1

-Two LP/MIP Solvers

- |psolve
- coin-Clp
-Techniques supported through model composition
- Model chaining
- Column generation
- Benders decomposition

Hybrids 2

- Combine CP + LS
-LS for high-quality solutions quickly (and speed up the CP proof)
-CP for optimality proof - completeness
-Composition?
- Sequential
- Parallel
-Communication?
-Bounds
- Actual solution, frequencies,

Architecture

Loadable plugins	LS Engine	CP Engine	LP Engine	MIP Engine	SAT Engine	Visualizer	User Defined
	Comet Virtual Machine						
	Operating system Windows / Linux / Mac OS						

Core Language

- Similar to C++ or Java
- Statically typed
- Strongly typed
- Abstractions
- Classes
- Interfaces
- Control
- All the usual gizmos
- Additional looping / branching construction

Workflow

Workflow

Workflow

Source Organization

Interface
Class
Function

Source Organization

Interface
Class
Function

Source Organization

Interface
Class
Function

Order of definitions irrelevant
All the "top-level" statements form the main function
No globals

Basic Language support

- You can define
-Classes
- Functions
- Interfaces
-All the traditional C++/Java - like statements
- Parameter passing is by value
- Integer, Float,Boolean classes like in Java
-IO
- stream-based (cin/cout) like in C++

Data support

-Data support

- array, matrices, sets, stack, queues, dictionaries
- Expressions
-Rich expression language with aggregates for arithmetic and sets

```
int x = sum(i in R) x[i];
int y = prod(i in R) x[i];
set{int} a = setof(i in R) (x[i]i%2==0);
set{int} b = collect(i in R) x[i];
```

- Slicing

```
int mx[i in 1..10,j in 1..10] = i * 10 + j;
int []col3 = all(i in 1..10) mx[i,3];
int []row4 = all(i in 1..10) mx[4,i];
int []diag = all(i in 1..10) mx[i,i];
```


Extra Control: Forall Loops

- Basic
-With ordering

```
forall(i in S)
    BLOCK
forall(i in S : p(i))
    BLOCK
forall(i in S : p(i)) by (f(i))
    BLOCK
```

Extra Control: Branching - Selectors
-Randomized, Minimum, Maximum

- Semi-greedy
select(i in S)
BLOCK
selectMin(i in $S)(f(i))$
BLOCK
selectMax(i in $S)(f(i))$
BLOCK
selectMin[k](i in S)(f(i))
BLOCK
selectMax[k](i in S)(f(i))
BLOCK
select(i in S : p(i))
BLOCK
selectMin(i in S : p(i))(f(i))
BLOCK
selectMax(i in S : p(i))(f(i))
BLOCK
selectMin[k](i in S : p(i))(f(i))
BLOCK
selectMax[k](i in S : p(i))(f(i))
BLOCK

Extra Control: Branching - Selectors

- Randomized, Minimum, Maximum
- Semi-greedy

```
select(i in S)
    BLOCK
```

selectMin(i in S)(f(i)) selectMin(i in $S: p(i))(f(i))$
BL Tie-break Broken uniformly at random
sel. Semi-greedy Selectors respect probability distributions

```
select(i in S : p(i))
    BLOCK
```

Tie-break Broken uniformly at random
sel. Semi-greedy Selectors respect probability distributions
BLOlk
selectMin[k](i in S)(f(i))
BLOCK
selectMax[k](i in S)(f(i))
BLOCK BLOuk
selectMin[k](i in S)(f(i)) BLOCK
selectMax[k](i in S)(f(i)) BLOCK

```
BLULK
selectMin[k](i in S : p(i))(f(i))
    BLOCK
selectMax[k](i in S : p(i))(f(i))
    BLOCK
```


Extra Control: Non-determinism

- Let us express choices
- Binary

Extra Control: Non-determinism

- Let us express choices
- N-ary
-Branches given by set S
tryall<c>(i in S) BLOCK

$$
\mathrm{S}=\left\{\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots . \mathrm{v}_{\mathrm{n}}\right\}
$$

Extra Control: Non-determinism

- Let us express choices
- N-ary
-Branches given by subset of S satisfying p(i)

```
tryall<c>(i in S : p(i))
    BLOCK
```

$$
\mathrm{S}=\left\{\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots . \mathrm{v}_{\mathrm{n}}\right\}
$$

Extra Control: Non-determinism

- Let us express choices
- N-ary
- Consider choices in order of increasing f(i)

```
tryall<c>(i in S : p(i)) by (f(i))
    BLOCK
```

$S=\left\{v_{0}, v_{1}, \ldots . . v_{n}\right\}$
$S^{\prime}=\{i \in S$ s.t. $p(i)\}, I S I=k$

$$
v_{\Pi(0)} \quad v_{\Pi(1)} \quad v_{\pi(2)} \quad v_{\pi(k-1)}
$$

$\pi=$ permutation(0..k-1)
s.t. $i \leq j \Rightarrow f(\pi(i)) \leq f(\pi(j))$

Extra Control: Non-determinism

- Let us express choices
- N-ary

```
tryall<c>(i in S : p(i)) by (f(i))
    BLOCK
    onFailure BLOCK2
```

- Adds ability to
- Execute BLOCK2 when there is a failure
- Before trying the next choice....

CP Computational Model

Computational Model

Operationally

-Compute a fixpoint of the constraint set
-Reason on each constraint C locally

- For every variable X appearing in C : prune $\mathrm{D}(\mathrm{x})$
-Propagate the impact to other constraints using X
- Stop when no more changes
\bullet-Outcomes?

Solvers

-Computational Model embedded in a solver -Comet supports several solvers
import cotfd;
Solver $<$ CP> $\quad c p() ;$

import cotln;	
Solver<LP>	$\operatorname{lp}() ;$
Solver<MIP>	ip();

```
import cotls;
Solver<LS> ls();
```

Importing =
Loading a shared library + defining all the interfaces + defining all the classes

Solvers

-Computational Model embedded in a solver
-Comet supports several solvers


```
import cotln;
Solver<LP> lp();
Solver<MIP> ip();
```

```
import cotls;
Solver<LS> ls();
```

Importing =
Loading a shared library + defining all the interfaces + defining all the classes

Variables

- Variables are declared for a specific Solver
- For finite domain
- Domain can be a range or a set.

```
import cotfd;
Solver<CP> cp();
var<CP>{int} x(cp,D);
var<CP>{bool} y(cp);
var<CP>{set{int}} z(cp,1..10); // In upcoming v1.3
```


Declarative Model

- Model states

-The nature of the problem
-Constraint Satisfaction Problem
-Find one solution

- Find all solution
-Constraint Optimization Problem
- Find one global solution.
- Prove optimality
\bullet the constraints
- Arithmetic / Logical / Combinatorial

CSP vs. COP

CSP

COP

Stating Constraints

- Constraints should be stated directly or indirectly via one of...
-The "solve" block
-The "subject to" block
-The "using" block
- Rationale...
- Constraints can fail (prove infeasibility)
-Constraints posted inside the block trigger backtracking
- Constraints posted outside these block simply fail
- [you must check the status manually]

Stating Constraints

- Constraints should be stated directly or indirectly via one of...
-The "solve" block
-The "subject to" block
-The "using" block
- Rationale...
- Constraints can fail (prove infeasibility)

```
solve<m> {
    m.post(constraint,onDomains);
-Constraints posted inside the block trigger backtracking
- Constraints posted outside these block simply fail
- [you must check the status manually]

\section*{Arithmetic Constraints}
- Use all the traditional arithmetic operators
-Binary operators: + - / ^ min max
-absolute value: abs()
-Use all the relational operators
\(\bullet \ll=\gg===\)

\section*{Element Constraints}
- Array and matrix indexing
- All combinations are allowed
- Index an array of constants with a variable [ELEMENT]
- Index a matrix of constants with variable(s) [Matrix ELEMENT]
- Index an array of variables with a variable
- Index a matrix of variables with variables(s)

\section*{Logical Constraints}
- Negation
-With the ! operator
- Conjunction
- With the \&\& operator
- Disjunction
- With the || operator
\[
\text { m.post }((a<b) \text { \| }(a<d))
\]
- Implication
-With the => operator

\section*{Combinatorial Constraints}
-The "global" constraints
-alldifferent
- cardinalities (at least, at most, exactly)
-binaryKnapsack, multiKnapsack,binPacking
-spread, deviation
- circuit
-inverse
- lexleq
-table
-sequence
-scheduling constraints...

\section*{First Simple Example}

\section*{-SEND + MORE = MONEY}
```

import cotfd;
Solver<CP> m();
range Digits = 0..9;
var<CP>{int} x[1..8](m,Digits);
var<CP>{int} S = x[1];
var<CP>{int} E = x[2];
var<CP>{int} N = x[3];
var<CP>{int} D = x[4];
var<CP>{int} M = x[5];
var<CP>{int} 0 = x[6];
var<CP>{int } R = x[7];
var<CP>{int} Y = x[8];

```

\section*{First Simple Example}

\section*{-SEND + MORE = MONEY}
```

import cotfd;
Solver<CP> m();
range Digits = 0..9;
var<CP>{int} x[1..8](m,Digits);
var<CP>{int} S = x[1];
var<CP>{int} E = x[2];
var<CP>{int} N = x[3];
var<CP>{int} D = x[4];
var<CP>{int} M = x[5];
var<CP>{int} 0 = x[6];
var<CP>{int} R = x[7];
var<CP>{int} Y = x[8];

```
```

solve<m> {
m.post(alldifferent(x));
m.post(M != 0);
m.post(S != 0);
m.post(1000*S + 100 * E + 10 * N + D +
1000*M + 100* O + 10 * R + E ==
10000 * M + 1000 * O + 100 * N + 10 * E + Y);
}
cout << x << endl;

```

\section*{First Simple Example}

\section*{-SEND + MORE = MONEY}
```

import cotfd;
Solver<CP> m();
range Digits = 0..9;
var<CP>{int} x[1..8](m,Digits);
var<CP>{int} S = x[1];
var<CP>{int} E = x[2];
var<CP>{int} N = x[3];
var<CP>{int} D = x[4];
var<CP>{int} M = x[5];
var<CP>{int} 0 = x[6];
var<CP>{int} R = x[7];
var<CP>{int} Y = x[8];

```

\section*{Notes}
1. Solve block
2. Default Search
3. Arithmetic constraint
4. One Combinatorial constraint
```

solve<m> {
m.post(alldifferent(x));
m.post(M != 0);
m.post(S != 0);
m.post(1000 * S + 100 * E + 10 * N + D +
1000 * M + 100 * O + 10 * R + E ==
10000 * M + 1000 * O + 100 * N + 10 * E + Y);
}
cout << x << endl;

```

\section*{Example}
- Magic series
\[
\begin{array}{ccccc}
0 & 1 & 2 & 3 & 4 \\
s[2, & 1,2,0,0]
\end{array}
\]
-A serie of length 5
-Reification (a.k.a. meta-constraint): constraint on constraints
```

import cotfd;
Solver<CP> m();
int n = 20;
range D = 0..n-1;
var<CP>{int} s[D](m,D);
solve<m> {
forall(k in D)
m.post(s[k] == sum(i in D) (s[i]==k));
}
cout << s << endl;
cout << "\#choices = " << m.getNChoice() << endl;
cout << "\#fail = " << m.getNFail() << endl;

```

\section*{Improving the model : Redundant Constraints}

\section*{- Add redundant constraint(s)!}
\(\sum_{k \in 0 . . n-1} s[k]=n \sum_{k \in 0 . . n-1} k \cdot s[k]=n \sum_{k \in 0 . . n-1}(k-1) \cdot s[k]=0\)
```

import cotfd;
Solver<CP> m();
int n = 20;
range D = 0..n-1;
var<CP>{int} s[D](m,D);
solve<m> {
forall(k in D)
m.post(s[k] == sum(i in D) (s[i]==k));
m.post(sum(k in D) (k-1)*s[k]==0);
}
cout << s << endl;
cout << "\#choices = " << m.getNChoice() << endl;
cout << "\#fail = " << m.getNFail() << endl;

```

\section*{Searching!}

\section*{-Purpose}
-Write your own search procedure
- Exploit problem semantics for...
- Variables ordering
- Value ordering
-Dynamic symmetry breaking
- Multi-phase searches
-Dichotomic branching
-...

\section*{Search anatomy}
- Two pieces
- Specify a search tree
\(\bullet\) What does the tree look like?
- variable ordering
\(\bullet\)-value ordering
- Specify [optional] a search strategy


\section*{Example with Queens}
- Rationale
- Simple problem
- Illustrates the techniques
- Start off with default strategy (DFS)

\section*{The basic model}
```

import cotfd;
int t0 = System.getCPUTime();
Solver<CP> m();
int n = 8;
range S = 1..n;
var<CP> {int} q[i in S](m,S);
solve<m> {
m.post(alldifferent(all(i in S) q[i] + i));
m.post(alldifferent(all(i in S) q[i] - i));
m.post(alldifferent(q));
}
cout << "Time = " << System.getCPUTime() - t0 << endl;
cout << "\#choices = " << m.getNChoice() << endl;
cout << "\#fail = " << m.getNFail() << endl;

```

\section*{Finding all solutions}
```

import cotfd;
int t0 = System.getCPUTime();
Solver<CP> m();
int n = 8;
range S = 1..n;
var<CP> {int} q[i in S](m,S);
solveall<m> {
m.post(alldifferent(all(i in S) q[i] + i));
m.post(alldifferent(all(i in S) q[i] - i));
m.post(alldifferent(q));
}
cout << "Time = " << System.getCPUTime() - t0 << endl;
cout << "\#choices = " << m.getNChoice() << endl;
cout << "\#fail = " << m.getNFail() << endl;

```

\section*{Printing and Counting solutions...}
```

import cotfd;
int t0 = System.getCPUTime();
Solver<CP> m();
int n = 8;
range S = 1..n;
var<CP> {int} q[i in S](m,S);
Integer c(0);
solveall<m> {
m.post(alldifferent(all(i in S) q[i] + i));
m.post(alldifferent(all(i in S) q[i] - i));
m.post(alldifferent(q));
} using {
labelFF(m);
cout << q << endl;
c := c + 1;
}
cout << "Nb = " << c << endl;
cout << "Time = " << System.getCPUTime() - t0 << endl;
cout << "\#choices = " << m.getNChoice() << endl;
cout << "\#fail = " << m.getNFail() << endl;

```

\section*{What is labelFF?}
-The default search procedure...
- Implements first-fail principle
- First the variable with the smallest domain
- Try values in increasing order
-Can't we write this ourselves?

\section*{Sure! \\ Let's start with a very naive search... \\ ...and build up!}

\section*{Static Ordering [a.k.a. the label function]}
- Simple idea
-Label variables in their "natural" order (order of declaration)
- Try values in increasing order
```

...
} using {
forall(i in S)
tryall<m>(V in S)
m.post(q[i] == v);

```
\}

\section*{Static Ordering 2}
-First improvement
- Skip over variables that are already bound!
```

...
} using {
forall(i in S : !a[i].bound())
tryall<m>(v in S)
m.post(q[i] == v);
}

```

\section*{Static Ordering 3}
- Second improvement
- Skip values that are no longer in the domain!
```

...
} using {
forall(i in S : !a[i].bound())
tryall<m>(v in S : a[i].memberOf(v))
m.post(q[i] == v);
}

```

\section*{Dynamic Ordering}
- First consider the variables with the smallest domain
- Note that this is dynamic, the domain size changes each time!
```

...
} using {
forall(i in S : !q[i].bound()) by (q[i].getSize())
tryall<m>(v in S : a[i].memberOf(v))
m.post(q[i] == v);
}

```

\section*{Dynamic Ordering}
-Finally...
-When we fail, remember that the value is no longer legal!
```

...
using {
forall(i in S : !q[i].bound()) by (q[i].getSize())
tryall<m>(v in S : q[i].memberOf(v))
m.post(q[i] == v);
onFailure m.post(q[i]!=v);
}

```

\section*{Tweaks...}
-Use lighter branching method
- replace
\(m . \operatorname{post}(x[i]==v)\) by
m.label(x[i],v);
- replace m.post(x[i] != v) by
m.diff(x[i],v);
- Light api...

\section*{Tweaks...}
-Use lighter branching method
- replace
- replace
\(m . \operatorname{post}(x[i]==v)\) by
\(m . \operatorname{post}(x[i]!=v)\) by
m.label(x[i],v);
m.diff(x[i],v);
-Light api...
```

class Solver<CP> {
Outcome<CP> label(var<CP>{int} x,int v);
Outcome<CP> diff(var<CP>{int} x,int v);
Outcome<CP> lthen(var<CP>{int} x,int v);
Outcome<CP> gthen(var<CP>{int} x, int v);
Outcome<CP> inside(var<CP>{int} x,set{int} s);
Outcome<CP> outside(var<CP>{int} x,set{int} s);

```

\section*{Final version}
- First-fail principle is 4 lines of code.
-Advantage?
- You can instrument / modify to your heart's content
```

...
} using {
forall(i in S : !q[i].bound()) by (q[i].getSize())
tryall<m>(v in S : q[i].memberOf(v))
m.label(q[i],v);
onFailure m.diff(q[i],v);
}

```
```

