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Overview

•The COMET Platform

•Core Language

•The CP Solver

•Declarative Model

•Search Procedures

•Demo
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COMET

•An optimization platform

•Constraint-based Local Search (CBLS)

•Constraint Programming (CP)

•Mathematical programming (MP)

•Availability

•Windows! ! 32

•MacOS! ! 32/64

•Linux! ! ! 32/64
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Integrating Code with COMET

•Options available

•Extend COMET in COMET

•User defined constraints (in CBLS and FD)

•Extend COMET in C++

•Call your C++ code from COMET. Plugin architecture.

•Embed COMET in C++

•Call COMET from C++
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Integrating Data Sources with COMET

•Database connectivity

•ODBC 2.0 (on all platforms)

•Data files

•XML reading/writing

5

Friday, May 22, 2009



User Interface with COMET

•Version 1.2 (and earlier)

•Cocoa visualization on MacOS

•Gtk visualization on Linux

•Nothing on windows

•Version 1.3 (or 2.0... )

•QT-based visualization

•On all platforms!
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Writing COMET programs?

•On version 1.2

•Development Studio on MacOS

•Emacs + command line on Linux 

•Emacs + command line on Windows

•On version 1.3 (or 2.0...)

•Development Studio with QT on all platforms

7
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Debugging COMET programs?

•On version 1.2

•Alpha version of a GUI debugger on Linux (GTK)

•Alpha version of a GUI debugger on MacOS (Cocoa)

•Alpha version of a text debugger on windows

•On version 1.3 (or 2.0...)

•GUI debugger on all platforms (QT again!)
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Modeling with COMET

•Modeling power

•High level models for CBLS and CP

•rich language of constraints and objectives 

•vertical extensions
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Solving with COMET

•Search

•a unique search language for CBLS, CP, MP

•Hybridization

•Solvers are first-class objects

10
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Hybrids 1

•Two LP/MIP Solvers

•lpsolve

•coin-Clp

•Techniques supported through model composition

•Model chaining

•Column generation

•Benders decomposition

11
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Hybrids 2

•Combine CP + LS

•LS for high-quality solutions quickly (and speed up the CP proof)

•CP for optimality proof - completeness

•Composition?

•Sequential

•Parallel

•Communication?

•Bounds

•Actual solution, frequencies, ....

12
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Architecture

13

Comet Virtual Machine

Operating system  Windows / Linux / Mac OS

LS Engine CP Engine LP Engine MIP Engine
SAT 

Engine
VisualizerLoadable plugins

User
Defined
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Core Language

•Similar to C++ or Java

•Statically typed

•Strongly typed

•Abstractions

•Classes

•Interfaces

•Control

•All the usual gizmos

•Additional looping / branching construction

14
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Workflow
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Workflow
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Workflow

15

COMET

Compiler

JIT

Virtual Machine
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Source Organization
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Interface

Class

Function
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main() {

Source Organization

16

Interface

Class

Function

Compilation
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main() {

Source Organization

16

Interface

Class

Function

Compilation
Order of definitions irrelevant

All the “top-level” statements form the main function

No globals
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Basic Language support

•You can define 

•Classes

•Functions

•Interfaces

•All the traditional C++/Java - like statements

•Parameter passing is by value 

•Integer, Float,Boolean classes like in Java

•IO

•stream-based (cin/cout) like in C++

17
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Data support

•Data support

•array, matrices, sets, stack, queues, dictionaries

•Expressions

•Rich expression language with aggregates for arithmetic and sets

•Slicing

18

int x = sum(i in R) x[i];

int y = prod(i in R) x[i];

set{int} a = setof(i in R) (x[i]i%2==0);

set{int} b = collect(i in R) x[i];

int mx[i in 1..10,j in 1..10] = i * 10 + j;

int []col3 = all(i in 1..10) mx[i,3];

int []row4 = all(i in 1..10) mx[4,i];

int []diag = all(i in 1..10) mx[i,i];
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Extra Control: Forall Loops

•Basic

•With ordering

19

forall(i in S)

BLOCK

forall(i in S : p(i))

BLOCK

forall(i in S : p(i)) by (f(i))

BLOCK
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Extra Control: Branching - Selectors

•Randomized, Minimum, Maximum

•Semi-greedy

20

select(i in S)

BLOCK

selectMin(i in S)(f(i))

BLOCK

selectMax(i in S)(f(i))

BLOCK

selectMin[k](i in S)(f(i))

BLOCK

selectMax[k](i in S)(f(i))

BLOCK

select(i in S : p(i))

BLOCK

selectMin(i in S : p(i))(f(i))

BLOCK

selectMax(i in S : p(i))(f(i))

BLOCK

selectMin[k](i in S : p(i))(f(i))

BLOCK

selectMax[k](i in S : p(i))(f(i))

BLOCK
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Extra Control: Branching - Selectors

•Randomized, Minimum, Maximum

•Semi-greedy

20

select(i in S)

BLOCK

selectMin(i in S)(f(i))

BLOCK

selectMax(i in S)(f(i))

BLOCK

selectMin[k](i in S)(f(i))

BLOCK

selectMax[k](i in S)(f(i))

BLOCK

select(i in S : p(i))

BLOCK

selectMin(i in S : p(i))(f(i))

BLOCK

selectMax(i in S : p(i))(f(i))

BLOCK

selectMin[k](i in S : p(i))(f(i))

BLOCK

selectMax[k](i in S : p(i))(f(i))

BLOCK

Tie-break Broken uniformly at random

Semi-greedy Selectors respect probability distributions
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Extra Control: Non-determinism

•Let us express choices

•Binary

21

try<c>

! BLOCK1
|! BLOCK2
|! BLOCK3
...

|! BLOCKK

1 3 k2
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Extra Control: Non-determinism

•Let us express choices

•N-ary

•Branches given by set S

22

tryall<c>(i in S)

   BLOCK

v0 v2
vnv1

S={v0,v1,....vn}
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Extra Control: Non-determinism

•Let us express choices

•N-ary

•Branches given by subset of S satisfying p(i)

23

tryall<c>(i in S : p(i))

   BLOCK

v0 v2
vkv1

S={v0,v1,....vn} S'={i ! S s.t. p(i)}
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Extra Control: Non-determinism

•Let us express choices

•N-ary

•Consider choices in order of increasing f(i)

24

tryall<c>(i in S : p(i)) by (f(i))

   BLOCK

v
!(0) v

!(2)
v
!(k-1)v

!(1)

S={v0,v1,....vn}

S'={i ! S s.t. p(i)} , |S| = k

! =permutation(0..k-1)
s.t. i " j⇒f(!(i)) " f(!(j)) 
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Extra Control: Non-determinism

•Let us express choices

•N-ary

•Adds ability to 

•Execute BLOCK2 when there is a failure

•Before trying the next choice....

25

tryall<c>(i in S : p(i)) by (f(i))

   BLOCK

onFailure BLOCK2
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CP Computational Model

26

Search

Constraint

Store
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Computational Model

27

Domain

Store

Constraint

Constraint Constraint

Constraint

Constraint

Constraint
Constraint

Constraint

Friday, May 22, 2009



Operationally

•Compute a fixpoint of the constraint set

•Reason on each constraint C locally

•For every variable X appearing in C: prune D(x)

•Propagate the impact to other constraints using X

•Stop when no more changes

•Outcomes ?

28

Success Failure Suspend

Done! Backtrack! Choices!
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Solvers

•Computational Model embedded in a solver

•Comet supports several solvers

29

import cotfd;

Solver<CP>  !cp();

import cotln;

Solver<LP> ! lp();

Solver<MIP>  ip();

import cotls;

Solver<LS> ! ls();

Importing =

Loading a shared library +

 defining all the interfaces +

defining all the classes
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Solvers

•Computational Model embedded in a solver

•Comet supports several solvers
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import cotfd;

Solver<CP>  !cp();

import cotln;
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Variables

•Variables are declared for a specific Solver

•For finite domain

•Domain can be a range or a set.

30

import cotfd;

Solver<CP>  !cp();

var<CP>{int} ! ! x(cp,D);

var<CP>{bool} ! ! y(cp);

var<CP>{set{int}} !z(cp,1..10);!! // In upcoming v1.3
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Declarative Model

•Model states 

•The nature of the problem

•Constraint Satisfaction Problem 

•Find one solution

•Find all solution

•Constraint Optimization Problem

•Find one global solution. 

•Prove optimality

•the constraints

•Arithmetic ! /  Logical! /   Combinatorial

31
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CSP vs. COP

32

Solver<CP> m();

...

solve<m> {

  ...

} [using BLOCK]

Solver<CP> m();

...

solveall<m> {

...

} [using BLOCK]

Solver<CP> m();

...

minimize<m> obj

subject to {

  ...

} [using BLOCK]

Solver<CP> m();

...

maximize<m> obj

subject to {

...

} [using BLOCK]

CSP COP

Friday, May 22, 2009



Stating Constraints

•Constraints should be stated directly or indirectly via one of...

•The “solve” block

•The “subject to” block

•The “using” block

•Rationale...

•Constraints can fail (prove infeasibility)

•Constraints posted inside the block trigger backtracking

•Constraints posted outside these block simply fail

•[you must check the status manually]

33

solve<m> {

m.post(constraint);

}

Auto,onDomains, 

onBounds, onValues

Friday, May 22, 2009



Stating Constraints

•Constraints should be stated directly or indirectly via one of...

•The “solve” block

•The “subject to” block

•The “using” block

•Rationale...

•Constraints can fail (prove infeasibility)

•Constraints posted inside the block trigger backtracking

•Constraints posted outside these block simply fail

•[you must check the status manually]

33

solve<m> {

m.post(constraint);

}

solve<m> {

m.post(constraint,onDomains);

}

Auto,onDomains, 

onBounds, onValues
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Arithmetic Constraints

•Use all the traditional arithmetic operators

•Binary operators:!! + - * /  ^  min max

•absolute value:! ! abs()

•Use all the relational operators

•< !  <=!! >! >= !! == !! !=

34

Friday, May 22, 2009



Element Constraints

•Array and matrix indexing

•All combinations are allowed

•Index an array of constants with a variable [ELEMENT]

•Index a matrix of constants with variable(s) [Matrix ELEMENT]

•Index an array of variables with a variable

•Index a matrix of variables with variables(s)

35
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Logical Constraints

•Negation

•With the ! operator

•Conjunction

•With the && operator

•Disjunction

•With the || operator

•Implication

•With the => operator

36

m.post(!b);

m.post((a < b) && (a < d));

m.post((a < b) || (a < d));

m.post(a => b);
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Combinatorial Constraints

•The “global” constraints

•alldifferent

•cardinalities (at least, at most, exactly)

•binaryKnapsack, multiKnapsack,binPacking

•spread, deviation

•circuit

•inverse

•lexleq

•table

•sequence

•scheduling constraints...
37
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First Simple Example

•SEND + MORE = MONEY

38

import cotfd;

Solver<CP> m();
range Digits = 0..9;

var<CP>{int} x[1..8](m,Digits);

var<CP>{int} S = x[1];
var<CP>{int} E = x[2];

var<CP>{int} N = x[3];
var<CP>{int} D = x[4];

var<CP>{int} M = x[5];
var<CP>{int} O = x[6];

var<CP>{int} R = x[7];
var<CP>{int} Y = x[8];
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First Simple Example

•SEND + MORE = MONEY

38

import cotfd;

Solver<CP> m();
range Digits = 0..9;

var<CP>{int} x[1..8](m,Digits);

var<CP>{int} S = x[1];
var<CP>{int} E = x[2];

var<CP>{int} N = x[3];
var<CP>{int} D = x[4];

var<CP>{int} M = x[5];
var<CP>{int} O = x[6];

var<CP>{int} R = x[7];
var<CP>{int} Y = x[8];

solve<m> {
   m.post(alldifferent(x));

   m.post(M != 0); 
   m.post(S != 0);

   m.post(            1000 * S + 100 * E + 10 * N + D +  
                      1000 * M + 100 * O + 10 * R + E ==

          10000 * M + 1000 * O + 100 * N + 10 * E + Y);
} 

cout << x << endl;

Friday, May 22, 2009



First Simple Example

•SEND + MORE = MONEY

38

import cotfd;

Solver<CP> m();
range Digits = 0..9;

var<CP>{int} x[1..8](m,Digits);

var<CP>{int} S = x[1];
var<CP>{int} E = x[2];

var<CP>{int} N = x[3];
var<CP>{int} D = x[4];

var<CP>{int} M = x[5];
var<CP>{int} O = x[6];

var<CP>{int} R = x[7];
var<CP>{int} Y = x[8];

solve<m> {
   m.post(alldifferent(x));

   m.post(M != 0); 
   m.post(S != 0);

   m.post(            1000 * S + 100 * E + 10 * N + D +  
                      1000 * M + 100 * O + 10 * R + E ==

          10000 * M + 1000 * O + 100 * N + 10 * E + Y);
} 

cout << x << endl;

Notes

! 1. Solve block

! 2. Default Search

! 3. Arithmetic constraint

! 4. One Combinatorial constraint
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Example

•Magic series

•A serie of length 5

•Reification (a.k.a. meta-constraint): constraint on constraints

39

import cotfd;

Solver<CP> m();

int n = 20;

range D = 0..n-1;

var<CP>{int} s[D](m,D);

solve<m> {

  forall(k in D)

    m.post(s[k] == sum(i in D) (s[i]==k));

}

cout << s << endl;

cout << "#choices = " << m.getNChoice() << endl;

cout << "#fail    = " << m.getNFail() << endl;

 0 1 2 3 4

s[2,1,2,0,0]
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Improving the model : Redundant Constraints

•Add redundant constraint(s)!

40

import cotfd;

Solver<CP> m();

int n = 20;

range D = 0..n-1;

var<CP>{int} s[D](m,D);

solve<m> {

  forall(k in D)

    m.post(s[k] == sum(i in D) (s[i]==k));

  m.post(sum(k in D) (k-1)*s[k]==0);

}

cout << s << endl;

cout << "#choices = " << m.getNChoice() << endl;

cout << "#fail    = " << m.getNFail() << endl;

�

k∈0..n−1

k · s[k] = n
�

k∈0..n−1

s[k] = n
�

k∈0..n−1

(k − 1) · s[k] = 0
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Searching!

•Purpose

•Write your own search procedure

•Exploit problem semantics for...

•Variables ordering

•Value ordering

•Dynamic symmetry breaking

•Multi-phase searches

•Dichotomic branching

•....

41
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Search anatomy

•Two pieces

•Specify a search tree

•What does the tree look like? 

•variable ordering

•value ordering

•Specify [optional] a search strategy

42

Search Tree Strategy

+
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Example with Queens

•Rationale

•Simple problem

•Illustrates the techniques

•Start off with default strategy (DFS)

43
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The basic model

44

import cotfd;

int t0 = System.getCPUTime();

Solver<CP> m();

int n = 8;

range S = 1..n;

var<CP>{int} q[i in S](m,S);

solve<m> {

   m.post(alldifferent(all(i in S) q[i] + i));

   m.post(alldifferent(all(i in S) q[i] - i));

   m.post(alldifferent(q));

} 

cout << "Time     = " << System.getCPUTime() - t0 << endl;

cout << "#choices = " << m.getNChoice() << endl;

cout << "#fail    = " << m.getNFail() << endl;
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Finding all solutions

45

import cotfd;

int t0 = System.getCPUTime();

Solver<CP> m();

int n = 8;

range S = 1..n;

var<CP>{int} q[i in S](m,S);

solveall<m> {

   m.post(alldifferent(all(i in S) q[i] + i));

   m.post(alldifferent(all(i in S) q[i] - i));

   m.post(alldifferent(q));

} 

cout << "Time     = " << System.getCPUTime() - t0 << endl;

cout << "#choices = " << m.getNChoice() << endl;

cout << "#fail    = " << m.getNFail() << endl;
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Printing and Counting solutions...

46

import cotfd;

int t0 = System.getCPUTime();

Solver<CP> m();

int n = 8;

range S = 1..n;

var<CP>{int} q[i in S](m,S);

Integer c(0);

solveall<m> {

   m.post(alldifferent(all(i in S) q[i] + i));

   m.post(alldifferent(all(i in S) q[i] - i));

   m.post(alldifferent(q));

} using {

   labelFF(m);

   cout << q << endl;

 c := c + 1;

}

cout << "Nb       = " << c << endl;

cout << "Time     = " << System.getCPUTime() - t0 << endl;

cout << "#choices = " << m.getNChoice() << endl;

cout << "#fail    = " << m.getNFail() << endl;
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What is labelFF ?

•The default search procedure...

•Implements first-fail principle

•First the variable with the smallest domain

•Try values in increasing order

•Can’t we write this ourselves?

47

Sure! 

Let’s start with a very naive search...

 ...and build up!
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Static Ordering [a.k.a. the label function]

•Simple idea

•Label variables in their “natural” order (order of declaration)

•Try values in increasing order

48

...

} using {

forall(i in S)

tryall<m>(v in S)

m.post(q[i] == v);

}
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Static Ordering 2

•First improvement

•Skip over variables that are already bound!

49

...

} using {

forall(i in S : !q[i].bound())

tryall<m>(v in S)

m.post(q[i] == v);

}
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Static Ordering 3

•Second improvement

•Skip values that are no longer in the domain!

50

...

} using {

forall(i in S : !q[i].bound())

tryall<m>(v in S : q[i].memberOf(v))

m.post(q[i] == v);

}
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Dynamic Ordering

•First consider the variables with the smallest domain

•Note that this is dynamic, the domain size changes each time!

51

...

} using {

forall(i in S : !q[i].bound()) by (q[i].getSize())

tryall<m>(v in S : q[i].memberOf(v))

m.post(q[i] == v);

}
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Dynamic Ordering

•Finally...

•When we fail, remember that the value is no longer legal!

52

...

} using {

forall(i in S : !q[i].bound()) by (q[i].getSize())

tryall<m>(v in S : q[i].memberOf(v))

m.post(q[i] == v);

onFailure m.post(q[i]!=v);

}
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Tweaks...

•Use lighter branching method

•replace ! m.post(x[i] == v)! by !!   ! m.label(x[i],v);

•replace! m.post(x[i] != v)! by! ! ! m.diff(x[i],v);

•Light api...

53
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Tweaks...

•Use lighter branching method

•replace ! m.post(x[i] == v)! by !!   ! m.label(x[i],v);

•replace! m.post(x[i] != v)! by! ! ! m.diff(x[i],v);

•Light api...

53

class Solver<CP> {

...

Outcome<CP> label(var<CP>{int} x,int v);

Outcome<CP> diff(var<CP>{int} x,int v);

Outcome<CP> lthen(var<CP>{int} x,int v);

Outcome<CP> gthen(var<CP>{int} x,int v);

Outcome<CP> inside(var<CP>{int} x,set{int} s);

Outcome<CP> outside(var<CP>{int} x,set{int} s);

...
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Final version

•First-fail principle is 4 lines of code.

•Advantage?

•You can instrument / modify to your heart’s content

54

...

} using {

forall(i in S : !q[i].bound()) by (q[i].getSize())

tryall<m>(v in S : q[i].memberOf(v))

m.label(q[i],v);

onFailure m.diff(q[i],v);

}
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