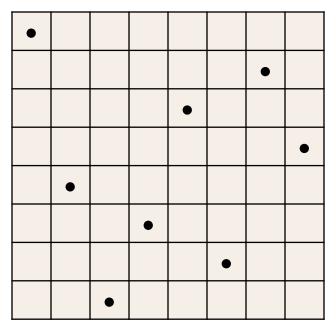
ID2204: Constraint Programming

Getting Practical... Modeling Introduction

Lecture 02, 2010-03-25

Christian Schulte

cschulte@kth.se


Software and Computer Systems
School of Information and Communication Technology
KTH – Royal Institute of Technology
Stockholm, Sweden

KTH Information and Communication Technology

8-Queens

Problem Statement

- Place 8 queens on a chess board such that the queens do not attack each other
- Straightforward generalizations
 - place an arbitrary number: n Queens
 - place as closely together as possible

What Are the Variables?

- Representation of position on board
- First idea: two variables per queen
 - one for row
 - one for column
 - 2⋅n variables
- Insight: on each column there will be a queen!

Fewer Variables...

- Have a variable for each column
 - value describes row for queen
 - n variables
- Variables: $x_0, ..., x_7$ where $x_i \in \{0, ..., 7\}$

Other Possibilities

- For each field: number of queen
 - which queen is not interesting, so...
 - n² variables
- For each field on board: is there a queen on the field?
 - 8×8 variables
 - variable has value 0: no queen
 - variable has value 1: queen
 - n^2 variables

Constraints: No Attack

- not in same column
 - by choice of variables
- not in same row
 - $x_i \neq x_j$ for $i \neq j$
- not in same diagonal
 - $x_i i \neq x_j j$ for $i \neq j$ $x_i j \neq x_i i$ for $i \neq j$

■ $3 \cdot n \cdot (n-1)$ constraints

Fewer Constraints...

- Sufficient by symmetry
 i < j instead of i ≠ j
- Constraints

$$x_i \neq x_j \qquad \text{for } i < j$$

$$x_i - i \neq x_j - j \qquad \text{for } i < j$$

$$x_i - j \neq x_i - i \qquad \text{for } i < j$$

■ $3/2 \cdot n \cdot (n-1)$ constraints

Even Fewer Constraints

Not same row constraint

$$x_i \neq x_j$$
 for $i < j$

means: values for variables pairwise distinct

- Constraints
 - distinct(x₀, ..., x₇)

$$x_i - i \neq x_j - j$$
 for $i < j$

$$x_i - j \neq x_i - i$$
 for $i < j$

Pushing it Further...

- Yes, also diagonal constraints can be captured by distinct constraints
 - see assignment

Script: Variables

```
Queens(void) : q(*this,8,0,7) {
    ...
}
```

Script: Constraints

```
Queens(void) : q(*this,8,0,7) {
   distinct(*this, q);
   for (int i=0; i<8; i++)
      for (int j=i+1; j<8; j++) {
      post(*this, x[i]-i != x[j]-j);
      post(*this, x[i]-j != x[j]-i);
    }
   ...
}</pre>
```

Script: Branching

Good Branching?

Naïve is not a good strategy for branching

- Try the following (see assignment)
 - first fail
 - place queen as much in the middle of a row
 - place queen in knight move fashion

Summary 8 Queens

Variables

- model should require few variables
- good: already impose constraints

Constraints

- do not post same constraint twice
- try to find "big" constraints subsuming many small constraints
 - more efficient
 - often, more propagation (to be discussed)