DM826 (5 ECTS - 3rd Quarter)
Modeling and Solving Constrained
Optimization Problems

Modeller og lasningsmetoder for optimeringsproblemer med
sidebetingelser

Marco Chiarandini

adjunkt, IMADA
www.imada.sdu.dk/~marco/

Main Goal

To cover the only missing technique for solving
combinatorial problems not yet treated at IMADA:

Constraint Programming

and to present an unifying framework for
» Mixed Integer Programming
» Constraint Programming and

» Heuristics

Example: Tournament Scheduling

Social Golfer Problem

9 golfers wish to play in g=3 groups of s=3 players for d=4 days.
such that no golfer plays in the same group with any other golfer
more than just once. Is it possible?

Group 1 Group 2 Group 3

Day 0 012 345 678
Day 1 036 147 258
Day 2 048 156 237

Day 3 057 138 246

Solution: Assign and Propagate

Day 0 Day | Day 2 Day 3

Golfer 0 | {1,23} | {1,23} | {1,23} | {1,2,3}

Group 1|Group 2 | Group 3 Golfer I | {1,23} | {1,23} | {1,2.3} | {1,2,3}

Golfer 2 | {1,2,3 1,2,3 1,2,3 1,2,3

Day 0 offer 2 | {1,2,3} | {1,2,3} | {123} | {1.2.3}
Golfer 31 (12,3} | {1,23} | {1,23} | {1,2,3}

Day 1 Golfer 4 | {1,23} | {1,23} | {1,2.3} | {1,2,3}
Day 2 Golfer 5 | (1,23} | {1,23} | {1,23} | {1,2,3}
Day 3 Golfer 6 | {1,2,3} | {1.2,3} | {1,23} | {1.2,3}

Golfer 7| {1,2,3} | 1,23} | 1,23} | {1,23)

Golfer 8 | {1,223} | (1,23} | {1,23} | {1.2.3}

Solution: Assign and Propagate

DayO | Day! | Day2 | Day3
Golfer 0 | 0,23y | {123} | {123}
Group 1| Group 2 | Group 3 Golfer | | 0,23y | {123} | {123}
Golfer 2 | 0,23y | {123} | {123}

Day 0 012

Golfer 3| 2,3} {1,2,3} | {1,2,3} | {1,2,3}

Day 1 Golfer4 | 2,3} | 11,23} | (1,23} | {1,23)
Day 2 Golfer S| 23} | (123} | {123} | {123)
Day 3 Golfer6 | {23} | (1,23} | (1,23} | {1,2.3}

Golfer 7| 2,3} | 1,23} | {1.23} | {1,23)

Golfer 8 | {23} | (1,23} | {1.23} | {1.2.3}

Solution: Assign and Propagate

DayO | Day!l | Day2 | Day3

Golfer 0 | (1,23} | {1,23} | {1,2.3}

Group 1|Group 2 | Group 3 Golfer | | (1,23} | (1,23} | {1,23}

Day 0 012 345 678 Golfer 2 | {1,23) | (1,23} | {1,2.3}
Golfer 3 2 {,23y | {1,2,3} | {1,2,3}

Day 1 Golfer 4 2 (1,23} | {1,23} | {1,2,3}
Day 2 Golfer 5 2 (1,23} | {1,23} | {1,2,3}
Day 3 Golfer 6 | {3} (1,23} | 1,23} | {1,2,3}
Golfer 7 | {3} (1,23} | (1,23} | {1,2,3}

Golfer 8 | {3} 1,23y | (1,23} | {1,2.3}

Solution: Assign and Propagate

DayO | Day!l | Day2 | Day3

Golfer 0 | | (1,23} | {1,2,3}

Group 1| Group 2 |Group 3 Golfer | ! {23 | {123} [{1.23}

Day 0 012 345 678 Golfer 2 | 23y | {1,23} | {1,23}
Golfer 3 2 {,23y | {1,2,3} | {1,2,3}

Day 1 Golfer 4 2 (1,23} | {1,23} | {1,2,3}
Day 2 Golfer 5 2 (1,23} | {1,23} | {1,2,3}
Day 3 Golfer 6 | {3} (1,23} | 1,23} | {1,2,3}
Golfer 7 | {3} (1,23} | (1,23} | {1,2,3}

Golfer 8 | {3} 1,23y | (1,23} | {1,2.3}

Solution: Assign and Propagate

Day0 | Day!| | Day2 | Day3

Golfer 0| | | 023 | 123

Group 1| Group 2 |Group 3 Golfer | ! 2 1,23} | {1.2.3}

pay 0 012 | 345 | 678 Golfer2 | | 8y | 023 | 023
Golfer3| 2 | {123} | (1,23} | {1.2.3)

Day 1 0 1 2 Golfer4| 2 | {123} | (1,23} | {1.2.3)
Day 2 Golfer5| 2 | 01,23 | (1,23} | {123}
Day 3 Golfer6 | 3} | (123} | (1,23} | {1.2.3}
Golfer 7| 3} | {123} | (1,23} | {1.2.3}

Golfers | {3} | {123} | (1,23} | {1.2.3)

Constraint Programming

int days = 4;
int groups =
int groupSize
int golfers = groups * groupSize;

range Golfer = 1l..golfers;
range Days = 1l..days;
range Group = l..groups;

var<CP>{int} assign[Golfer,Days](m, Group);

explore<m> {
// Cl: Each group has exactly groupSize players
forall (gr in Group, d in Days)
m.post(sum (g in Golfer) (assign[g,d] == gr) == groupSize);
// C2: Each pair of players only meets once
forall (gl in Golfer, g2 in Golfer: gl != g2, dl in Days, d2 in Days: dl!=d2)
m.post((assign[gl,dl] == assign[g2,dl]) + (assign[gl,d2] == assign[g2,d2])
== 1);
} using {
label (m);
}

Constraint Satisfaction Model

Input:

a set of variables X1,X2,...,Xn each variable has a non-
empty domain Di of possible values

a set of constraints. Each constraint Ci involves some
subset of the variables and specifies the allowed
combination of values for that subset.

Task:

find an assignment of values to all the variables
{Xi=vi, Xj=Vvj,...}

such that it is consistent, that is, it does not violate any
constraint

Constraint Programming

» Modelling

» Compute with possible values

» rather than enumerating assignments

» Prune inconsistent values

» constraint propagation

» Search

» branch (define the search tree)

» variables, values, constraints, heuristics, symmetries, ...

Constraint Propagators

arithmetic and logical constraints

element constraints

table constraint

alldifferent and minAssignment

atleast, atmost, cardinality

 binary- and multi-knapsack

scheduling constraints: disjunctive and cumulative
graph constraints: circuit and minCircuit
sequence

stretch and regular

All-Intervals Problem

Given the twelve standard pitch-classes (c, c#, d, ...),

represented by numbers 0,1,...,11,
find a series in which each pitch-class occurs exactly once and

in which the musical intervals between neighbouring notes
cover the full set of intervals from the minor second (1
semitone) to the major seventh (11 semitones).

int n = 12;
int sum_distinct = ((n+l)*n) / 2;

var<CP>{int} x[1l..n](m, 1l..n);
var<CpP>{int} diffs[l..n-1](m, 1..n-1);

exploreall<m> {
forall(k in 1..n-1)
m.post (diffs[k] == abs(x[k+1l] - x[k]));
m.post (alldifferent(x));
m.post (alldifferent(diffs));

// symmetry breaking
m.post(x[1] < x[n-1]);
m.post (diffs[1l] < diffs[2]);
} using {
label (m)
}

Course Organization

Aims

e understanding the fundamental concepts underlying
constraint programming,

e developing skills in modelling and solving combinatorial
problems,

e developing skills in taking advantage of strong algorithmic
techniques

e getting acquainted with a CP system and develop applications

Course Organization

Contents

e Principles

(modelling, domain consisteny, search techniques)

e Algorithmics

(to propagate constraints efficiently)

e Applications 14 Lectures

(academic problems) 4 Tutorials

e Programming

(Gecode or Comet, modelling + C++)

Prerequisites

The content of DM515 (Intro to Linear and Integer
Programming) must be known

Final Assessment (5 ECTYS)

» Three mandatory assignments:
- Two during the course (pass/fail)
- One at the end

» External examiner

Course Material

» Text book

— Hooker, J. N. Integrated Methods for Optimization. Springer,
2007

- F. Rossi, P. van Beek and T. Walsh (ed.). Handbook of Constraint
Programming, Elsevier, 2006

— Christian Schulte, Guido Tack, Mikael Z. Lagerkvist, Modelling
and Programming with Gecode, 2010
» Photocopies
» Slides
» Gecode and data sets

» www.imada.sdu.dk/~marco/DM826

