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Global Variables

Resume Graph Variables

Modelling in IP and CP

Global constraints

@ Local consistency notions

o Filtering algorithms for global constraints
@ Search

o Symmetries

@ Set variables

o Integrated/Advanced Approaches:

e Branch and price

o Logic-based Benders decomposition

@ Scheduling



Global Variables

Global variables: complex variable types representing combinatorial structures
in which problems find their most natural formulation

Eg:
sets, multisets, strings, functions, graphs

bin packing, set partitioning, mapping problems

We will see:

@ Set variables

o Graph variables



Global Variables

O utl i ne Graph Variables

1. Global Variables



Global Variables

Finite-Set Variables Graph Varicbles

o A finite-domain integer variable takes values from a finite set of integers.

o A finite-domain set variable takes values from the power set of a finite
set of integers.
Eg.:
domain of x is the set of subsets of {1,2,3}:

({11120, (30, (1.2}, (1.3}, (2.3}, {1,2,3}}



Finite-Set Variables Global Variables

Recall the shift-assignment problem

We have a lower and an upper bound on the number of shifts that each
worker is to staff (symmetric cardinality constraint)

@ one variable for each worker that takes as value the set of shifts covererd
by the worker. ~~ exponential number of values

@ set variables with domain D(x) = [/b(x), ub(x)]
D(x) consists of only two sets:

e /b(x) mandatory elements
e ub(x) \ Ib(x) of possible elements

The value assigned to x should be a set s(x) such that
Ib C s(x) C ub(x)

In practice good to keep dual views with channelling



Global Variables

Finite-Set Variables Global Varlables

Example:

domain of x is the set of subsets of {1,2,3}:

(A2 {31 {1, 21, {1, 3}, {2, 3}, {1,2,3}}

can be represented in space-efficient way by:

[{}.{1,2,3}]

The representation is however an approximation!

Example:

domain of x is the set of subsets of {1,2,3}:

13 {2h {3}, {1, 21, {1,3},{2,3}}

cannot be captured exactly by an interval. The closest interval would be still:

[{}.{1,2,3}]

~~ we store additionally cardinality bounds: #][i..j]




Global Variables

Set Va ria bleS Graph Variables

Definition
set variable is a variable with domain D(x) = [/b(x), ub(x)]
D(x) consists of only two sets:

@ /b(x) mandatory elements (intersection of all subsets)

o ub(x)\ Ib(x) of possible elements (union of all subsets)

The value assigned to x must be a set s(x) such that /b C s(x) C ub(x)

We are not interested in domain consistency but in bound consistency:

Enforcing bound consistency

A bound consistency for a constraint C defined on a set variable x requires
that we:
@ Remove a value v from ub(x) if there is no solution to C in which
v € s(x).
@ Include a value v € ub(x) in Ib(x) if in all solutions to C, v € s(x).




Global Variables

In Comet

import cotfd;

Solver cpQ);

var<CP>{set{int}} S(cp,1..5,2..4);
var<CP>{set{int}} S1(cp,{3,5,7,8,9},2..4);

Ib(x) cannot be specified. It can be stated in the CP model.

boolean bound();
set{int} getValue();
set{int} evallntSet();

var<CP>{int} getCardinalityVariable();
set{int} getRequiredSet(); //1b(x)
set{int} getPossibleSet(); //ub(x)
boolean isRequired(int v);

boolean isExcluded(int v);



Global Variables

In Comet

import cotfd;

Solver<CP> cp();

var<CP>{set{int}} S(cp,1..5,2..4);
cp.post(S.getCardinalityVariable() !=3);
cp.post (requiresValue(S,3));

cp.post (excludesValue(S,2));

cout << S.getRequiredSet() << endl;
cout << S.getPossibleSet() << endl;
cout << S.isRequired(4) << endl;

cout << S.isExcluded(2) << endl;

What are the possible values of the variable 57
And the state of the variable S?

(O3}, (1O{2},(4){1,3,4,5> | (DOM:2) [2,4]1)
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In Comet

In addition, create variables on the presence of values:

var<CP>{boolean}
var<CP>{boolean}

boolean

boolean

getRequired(int v);
getExcluded(int v);
hasRequiredVariable(int v);
hasExcludedVariable(int v);

Global Variables
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Constraints on FS variables Global Varlables

Basic operations

cp.post (S1==82) ;

cp.post (subset (51,52));
cp.post(setunion(S1,S2,RES));
cp.post(setinter(S1,S2,RES));
cp.post(setdifference(S1,52,RES));

RES = setunion(S1,S2);
RES = setinter(S1,S2);
RES = setdifference(S1,S82);



Constraints on FS variables Global Variables
Set cardinality

cp.post(cardinality(S1,k));
cp.post(S1.getCardinalityVariable() !=k);

cp.post (atleastIntersection(S1,52,k));
cp.post (atmostIntersection(S1,S2,k));
cp.post (exactIntersection(81,52,k));

cp.post(disjoint(S1,82));
cp.post(allDisjoint(SA));

where S1 and S2 are set variables and SA is an array of set variables.
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Constraints on FS variables Global Varlables

Requirement and exclusion constraints

cp.post (requiresValue(S,k1));
cp.post (excludesValue(S,k2));

cp.post(requiresVariable(S,x1));
cp.post (excludesVariable(S,x2));



Constraints on FS variables Global Varlables

Channeling constraints

SA1 and SA; two arrays of set variables

cp.post (channeling(SA1,SA2));

SAil] =s <= VYjes:ie SAl SAi[l] = {j||SAz[j]containsi}
SAx[j] = {il|SAi[i]contains;}

Example:

SA1 = [{1,2},{3},{1,2}]

SA2 = [{1,33},{1,3},{2}]
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Constraints on FS variables Global Varlables

Channeling constraints

SA an array of set variables, X an array of integer variables

cp.post (channeling(SA,X));

SAlill=s<=Vjes: X[j]=i

SA = [{1,2},{3}]
X=1[1,1,2]
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Global Variables

Constraints on FS variables Global Varlables
Set Global Cardinality

bounds the minimum and maximum number of occurrences of an element in
an array of set variables:
Ywvel: I, <I|S|<u,

where S, is the set of set variables that contain the element v, i.e.,
S, ={seS:ves}
cp.post(setGlobalCardinality(1,SA,u));
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Constraints on FS variables
Set Global Cardinality

Table 1. Intersection x Cardinality.

Global Variables
Craph Variables

Vi<g...
Yk ... X, nX;|=0 X:nNnX;| <k X, NX;| >k XiNnX;[=k
Disjoint Intersect« Intersect Intersect_—
- polynomial polynomial - polynomial - NP-hard
decomposable decomposable decomposable |not decomposable
NEDisjoint NEIntersect« NEIntersect- FCIntersect=
| Xk >0 polynomial polynomial polynomial NP-hard
not decomposable decomposable decomposable |not decomposable
FCDisjoint FCIntersect« FCIntersect~ NEIntersect—
| X3 | = my |poly on sets, NP-hard on multisets NP-hard ~ NP-hard NP-hard
not decomposable not decomposable|not decomposable|not decomposable
Table 2. Partition + Intersection x Cardinality.
U, X=X avi<j...
Yk, [X:nX;[=0 [Xin X;| <KX N X 2 k[Xs N X =k
- Partition: polynomial ? ? ?
decomposable
| Xkl >0 NEPartition: polynomial ? ? ?
not decomposable
FCPartition
| X )| = my [polynomial on sets, NP-hard on multisets ? ? ?
not decomposable
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Global Variables

Sonet problem

Optical fiber network design

Sonet problem

Input: weighted undirected demand graph G = (N, E; d), where each node
u € N represents a client and weighted edges (v, v) € E correspond to traffic
demands of a pair of clients.

Two nodes can communicate, only if they join the same ring; nodes may join
more than one ring. We must respect:

@ maximum number of rings r

@ maximum number of clients per ring a

@ maximum bandwidth capacity of each ring ¢

Task: find a topology that minimizes the sum, over all rings, of the number
of nodes that join each ring while clients’ traffic demands are met.
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Global Variables

Sonet problem Sroei Varable:

Sonet problem

A solution of the SONET problem is an assignment of rings to nodes and of
capacity to demands such that

all demands of each client pairs are satisfied;

the ring traffic does not exceed the bandwidth capacity;
at most r rings are used;

at most a ADMs on each ring;

the total number of ADMs used is minimized.
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Global Variables

Sonet: variables Cronh Variables

@ Set variable X; represents the set of nodes assigned to ring /
@ Set variable Y|, represents the set of rings assigned to node u

o Integer variable Z;. represents the amount of bandwidth assigned to
demand pair e on ring /.
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Sonet: model

min

s.t.

Global Variables
Graph Variables

> IXil

i€ER

lY,nY,| >1, V(u,v) € E,
Ziww>0=ie(Y,NnY,), VieR,(u,v)€E,
Z. = d(e), Ve € E,
ueXisiey,, VeRueN,
|Xi| < a, VieR
Y Ze<c Vi e R.
ecE

Xi < X;, Vi,je R:i <.
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Global Variables

O Utl i n e Graph Variables

2. Graph Variables



Global Variables

Graph Variables Granh varablcs

Definition
A graph variable is simply two set variables V' and E, with an inherent
constraint E C V x V.
Hence, the domain D(G) = [Ib(G), ub(G)] of a graph variable G consists of:
@ mandatory vertices and edges /b(G) (the lower bound graph) and
@ possible vertices and edges ub(G) \ Ib(G) (the upper bound graph).

The value assigned to the variable G must be a subgraph of ub(G) and a
super graph of the /b(G).
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Global Variables

Bound consistency on Graph Variables  creh verisbics

Graph variables are convinient for possiblity of efficient filtering algorithms

Example:

Subgraph(G,S)
specifies that S is a subgraph of G. Computing bound consistency for the
subgraph constraint means the following:

1. If Ib(S) is not a subgraph of ub(G), the constraint has no solution
(consistency check).

2. For each e € ub(G) N Ib(S), include e in Ib(G).
3. For each e € ub(S) \ ub(G), remove e from ub(S).
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Constraint on Graph Variables Graph Variables

@ Tree constraint: enforces the partitioning of a digraph into a set of
vertex-disjoint anti-arborescences. (see, [Beldiceanu2005])

@ Weghted Spanning Tree constraint: given a weighted undirected graph
G = (V,E) and a weight K, the constraint enforces that T is a
spanning tree of cost at most K (see, [Regin2008,2010] and its
application to the TSP [Rousseau2010]).

@ Shorter Path constraint: given a weighted directed graph G = (N, A)
and a weight K, the constraint specifies that P is a subset of G,
corresponding to a path of cost at most K. (see, [Sellmann2003,
Gellermann2005])

o (Weighted) Clique Constraint, (see, [Regin2003]).
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