DM826 - Spring 2011
Modeling and Solving Constrained Optimization Problems

Lecture 11
 Global Variables

Marco Chiarandini
Department of Mathematics \& Computer Science University of Southern Denmark

Resume

- Modelling in IP and CP
- Global constraints
- Local consistency notions
- Filtering algorithms for global constraints
- Search
- Symmetries
- Set variables
- Integrated/Advanced Approaches:
- Branch and price
- Logic-based Benders decomposition
- Scheduling

Global Variables

Global variables: complex variable types representing combinatorial structures in which problems find their most natural formulation

Eg:
sets, multisets, strings, functions, graphs
bin packing, set partitioning, mapping problems
We will see:

- Set variables
- Graph variables

Outline

\author{

1. Global Variables
}
[^0]
Finite-Set Variables

- A finite-domain integer variable takes values from a finite set of integers.
- A finite-domain set variable takes values from the power set of a finite set of integers.
Eg.: domain of x is the set of subsets of $\{1,2,3\}$:

$$
\{\},\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}
$$

Finite-Set Variables

Recall the shift-assignment problem
We have a lower and an upper bound on the number of shifts that each worker is to staff (symmetric cardinality constraint)

- one variable for each worker that takes as value the set of shifts covererd by the worker. \rightsquigarrow exponential number of values
- set variables with domain $D(x)=[/ b(x), u b(x)]$
$D(x)$ consists of only two sets:
- $l b(x)$ mandatory elements
- $u b(x) \backslash l b(x)$ of possible elements

The value assigned to x should be a set $s(x)$ such that $l b \subseteq s(x) \subseteq u b(x)$

In practice good to keep dual views with channelling

Finite-Set Variables

Example:
domain of x is the set of subsets of $\{1,2,3\}$:

$$
\{\},\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}
$$

can be represented in space-efficient way by:

$$
[\} . .\{1,2,3\}]
$$

The representation is however an approximation!
Example:
domain of x is the set of subsets of $\{1,2,3\}$:

$$
\{\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\}\}
$$

cannot be captured exactly by an interval. The closest interval would be still:

$$
[\} . .\{1,2,3\}]
$$

\rightsquigarrow we store additionally cardinality bounds: \#[i..j]

Set Variables

Definition
set variable is a variable with domain $D(x)=[l b(x), u b(x)]$
$D(x)$ consists of only two sets:

- $l b(x)$ mandatory elements (intersection of all subsets)
- $u b(x) \backslash l b(x)$ of possible elements (union of all subsets)

The value assigned to x must be a set $s(x)$ such that $l b \subseteq s(x) \subseteq u b(x)$
We are not interested in domain consistency but in bound consistency:
Enforcing bound consistency
A bound consistency for a constraint C defined on a set variable \times requires that we:

- Remove a value v from $u b(x)$ if there is no solution to C in which $v \in s(x)$.
- Include a value $v \in u b(x)$ in $l b(x)$ if in all solutions to $C, v \in s(x)$.

In Comet

```
import cotfd;
Solver cp();
var<CP>{set{int}} S(cp,1..5,2..4);
var<CP>{set{int}} S1(cp,{3,5,7,8,9},2..4);
```

$l b(x)$ cannot be specified. It can be stated in the CP model.

```
boolean bound();
set{int} getValue();
set{int} evalIntSet();
var<CP>{int} getCardinalityVariable();
set{int} getRequiredSet(); //lb(x)
set{int} getPossibleSet(); //ub(x)
boolean isRequired(int v);
boolean isExcluded(int v);
```


In Comet

```
import cotfd;
Solver<CP> cp();
var<CP>{set{int}} S(cp,1..5,2..4);
cp.post(S.getCardinalityVariable()!=3);
cp.post(requiresValue(S,3));
cp.post(excludesValue(S,2));
cout << S.getRequiredSet() << endl;
cout << S.getPossibleSet() << endl;
cout << S.isRequired(4) << endl;
cout << S.isExcluded(2) << endl;
```

What are the possible values of the variable S ?
And the state of the variable S ?
((1) $\{3\},(1)\{2\},(4)\{1,3,4,5\} \mid(D O M: 2)[2,4])$

In Comet

In addition, create variables on the presence of values:

```
var<CP> {boolean}
var<CP>{boolean}
boolean
boolean
getRequired(int v);
getExcluded(int v);
hasRequiredVariable(int v);
hasExcludedVariable(int v);
```

```
cp.post(S1==S2);
cp.post(subset(S1,S2));
cp.post(setunion(S1,S2,RES));
cp.post(setinter(S1,S2,RES));
cp.post(setdifference(S1,S2,RES));
```

```
RES = setunion(S1,S2);
RES = setinter(S1,S2);
RES = setdifference(S1,S2);
```


Constraints on FS variables

```
cp.post(cardinality(S1,k));
cp.post(S1.getCardinalityVariable()!=k);
```

```
cp.post(atleastIntersection(S1,S2,k));
cp.post(atmostIntersection(S1,S2,k));
cp.post(exactIntersection(S1,S2,k));
```

cp.post(disjoint(S1,S2));
cp.post(allDisjoint(SA));
where S1 and S2 are set variables and SA is an array of set variables.

```
cp.post(requiresValue(S,k1));
cp.post(excludesValue(S,k2));
```

cp.post(requiresVariable(S,x1));
cp.post(excludesVariable(S,x2));

Constraints on FS variables

$S A_{1}$ and $S A_{2}$ two arrays of set variables
cp.post(channeling(SA1,SA2));

$$
S A_{1}[i]=s \Longleftrightarrow \forall j \in s: i \in S A_{2}[j]
$$

$$
\begin{aligned}
& S A_{1}[i]=\left\{j \| S A_{2}[j] \text { contains } i\right\} \\
& S A_{2}[j]=\left\{i \| S A_{1}[i] \text { contains }\right\}
\end{aligned}
$$

Example:

$$
\begin{aligned}
& \text { SA1 }=[\{1,2\},\{3\},\{1,2\}] \\
& \text { SA2 }=[\{1,3\},\{1,3\},\{2\}]
\end{aligned}
$$

Constraints on FS variables

SA an array of set variables, X an array of integer variables

```
cp.post(channeling(SA,X));
```

$$
S A[i]=s \Longleftrightarrow \forall j \in s: X[j]=i
$$

$$
\begin{aligned}
& S A=[\{1,2\},\{3\}] \\
& X=[1,1,2]
\end{aligned}
$$

Constraints on FS variables

bounds the minimum and maximum number of occurrences of an element in an array of set variables:

$$
\forall v \in U: I_{v} \leq\left|\mathcal{S}_{v}\right| \leq u_{v}
$$

where \mathcal{S}_{v} is the set of set variables that contain the element v, i.e., $\mathcal{S}_{v}=\{s \in S: v \in s\}$
cp.post(setGlobalCardinality(l,SA,u));

Constraints on FS variables
 Set Global Cardinality

Table 1. Intersection \times Cardinality.

	$\forall i<j \ldots$			
$\forall k \ldots$	$X_{i} \cap X_{j} \mid=0$	$X_{i} \cap X_{j} \mid \leq k$	$X_{i} \cap X_{j} \mid \geq k$	$X_{i} \cap X_{j} \mid=k$
-	Disjoint polynomial decomposable	Intersect \leq polynomial decomposable	Intersect \geq polynomial decomposable	$\begin{gathered} \text { Intersect }= \\ \text { NP-hard } \\ \text { not decomposable } \end{gathered}$
$\left\|X_{k}\right\|>0$	NEDisjoint polynomial not decomposable	NEIntersect< polynomial decomposable	NEIntersect \geq polynomial decomposable	$\begin{gathered} \text { FCIntersect }= \\ \text { NP-hard } \\ \text { not decomposable } \\ \hline \end{gathered}$
$\left\|X_{k}\right\|=m_{k}$	FCDisjoint poly on sets, NP-hard on multisets not decomposable	FCIntersect \leq NP-hard not decomposable	FCIntersect \geq NP-hard not decomposable	$\begin{gathered} \text { NEIntersect }= \\ \text { NP-hard } \\ \text { not decomposable } \end{gathered}$

Table 2. Partition + Intersection \times Cardinality.

	$\bigcup_{i} X_{i}=X \wedge \forall i<j \ldots$			
$\forall k \ldots$	$X_{i} \cap X_{j} \mid=0$	$\left\|X_{i} \cap X_{j}\right\| \leq k$	$\left\|X_{i} \cap X_{j}\right\| \geq k$	$\left\|X_{i} \cap X_{j}\right\|=k$
-	Partition: polynomial decomposable	?	?	?
$\left\|X_{k}\right\|>0$	NEPartition: polynomial not decomposable	?	?	?
$\left\|X_{k}\right\|=m_{k}$	FCPartition polynomial on sets, NP-hard on multisets not decomposable	?	?	?

Sonet problem

Optical fiber network design
Sonet problem
Input: weighted undirected demand graph $G=(N, E ; d)$, where each node $u \in N$ represents a client and weighted edges $(u, v) \in E$ correspond to traffic demands of a pair of clients.

Two nodes can communicate, only if they join the same ring; nodes may join more than one ring. We must respect:

- maximum number of rings r
- maximum number of clients per ring a
- maximum bandwidth capacity of each ring c

Task: find a topology that minimizes the sum, over all rings, of the number of nodes that join each ring while clients' traffic demands are met.

Sonet problem

Sonet problem
A solution of the SONET problem is an assignment of rings to nodes and of capacity to demands such that
all demands of each client pairs are satisfied;
the ring traffic does not exceed the bandwidth capacity;
at most r rings are used;
at most a ADMs on each ring; the total number of ADMs used is minimized.

Sonet: variables

- Set variable X_{i} represents the set of nodes assigned to ring i
- Set variable Y_{u} represents the set of rings assigned to node u
- Integer variable $Z_{i e}$ represents the amount of bandwidth assigned to demand pair e on ring i.

Sonet: model

$$
\begin{array}{ll}
\min & \sum_{i \in R}\left|X_{i}\right| \\
\text { s.t. } & \left|Y_{u} \cap Y_{v}\right| \geq 1 \\
& Z_{i,(u, v)}>0 \Rightarrow i \in\left(Y_{u} \cap Y_{v}\right) \\
& Z_{i e}=d(e) \\
& u \in X_{i} \Leftrightarrow i \in Y_{u} \\
& \left|X_{i}\right| \leq a \\
& \sum_{e \in E} Z_{i e} \leq c \\
& X_{i} \preceq X_{j}
\end{array}
$$

Outline

1. Global Variables

2. Graph Variables

Graph Variables

Definition
A graph variable is simply two set variables V and E, with an inherent constraint $E \subseteq V \times V$.
Hence, the domain $D(G)=[l b(G), u b(G)]$ of a graph variable G consists of:

- mandatory vertices and edges $l b(G)$ (the lower bound graph) and
- possible vertices and edges $u b(G) \backslash l b(G)$ (the upper bound graph).

The value assigned to the variable G must be a subgraph of $u b(G)$ and a super graph of the $l b(G)$.

Bound consistency on Graph Variables

Graph variables are convinient for possiblity of efficient filtering algorithms
Example:
Subgraph (G,S)
specifies that S is a subgraph of G. Computing bound consistency for the subgraph constraint means the following:

1. If $l b(S)$ is not a subgraph of $u b(G)$, the constraint has no solution (consistency check).
2. For each $e \in u b(G) \cap l b(S)$, include e in $l b(G)$.
3. For each $e \in u b(S) \backslash u b(G)$, remove e from $u b(S)$.

Constraint on Graph Variables

- Tree constraint: enforces the partitioning of a digraph into a set of vertex-disjoint anti-arborescences. (see, [Beldiceanu2005])
- Weghted Spanning Tree constraint: given a weighted undirected graph $G=(V, E)$ and a weight K, the constraint enforces that T is a spanning tree of cost at most K (see, [Regin2008,2010] and its application to the TSP [Rousseau2010]).
- Shorter Path constraint: given a weighted directed graph $G=(N, A)$ and a weight K, the constraint specifies that P is a subset of G, corresponding to a path of cost at most K. (see, [Sellmann2003, Gellermann2005])
- (Weighted) Clique Constraint, (see, [Regin2003]).

References

Bessiere C., Hebrard E., Hnich B., and Walsh T. (2004). Disjoint, partition and intersection constraints for set and multiset variables. In Principles and Practice of Constraint Programming - CP 2004, edited by M. Wallace, vol. 3258 of Lecture Notes in Computer Science, pp. 138-152. Springer Berlin / Heidelberg. Gervet C. (2006). Constraints over structured domains. In Handbook of Constraint Programming, edited by F. Rossi, P. van Beek, and T. Walsh, chap. 10, pp. 329-376. Elsevier.
van Hoeve W. and Katriel I. (2006). Global constraints. In Handbook of Constraint Programming, chap. 6. Elsevier.

[^0]: 2. Graph Variables
