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Dantzig-Wolfe DecompositionResume

Modelling in IP and CP

Global constraints

Local consistency notions

Filtering algorithms for global constraints

Search

Symmetries

Set variables

Integrated/Advanced Approaches:

Branch and price

Logic-based Benders decomposition

Scheduling
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Dantzig-Wolfe DecompositionTractable Structures

Binary constraints  constraint graph

Independent subproblems
connected components

Tree-networks
directed arc coinsistency enforced in linear time

Reduce graphs to trees
cutset conditioning (cycle cutset, NP-hard problem)
tree decomposition (min tree width NP-hard problem)

Possible extensions to hypergraphs
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Dantzig-Wolfe DecompositionOutline

1. Dantzig-Wolfe Decomposition
Delayed Column Generation
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Dantzig-Wolfe DecompositionHybridization schemes

CP and IP hybridization schemes:

relaxations
(eg, bound filterning in linear constraints and guiding search in soft
constraints)

decomposition approaches:

Branch and price

Benders-based decompiosition
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Dantzig-Wolfe DecompositionDantzig-Wolfe Decomposition
Motivation: Large difficult IP models
è split them up into smaller pieces

Applications
Cutting Stock problems

Multicommodity Flow problems

Facility Location problems

Capacitated Multi-item Lot-sizing problem

Air-crew and Manpower Scheduling

Vehicle Routing Problems

Scheduling

Leads to methods also known as:
Branch-and-price (column generation + branch and bound)

Branch-price-and-cut (column generation + branch and bound + cutting
planes)
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Dantzig-Wolfe Decomposition

Dantzig-Wolfe Decomposition
The problem is split into a master problem and a subproblem

+ Tighter bounds

+ Better control of subproblem

− Model may become (very) large

Delayed column generation
Write up the decomposed model gradually as needed

Generate a few solutions to the subproblems

Solve the master problem to LP-optimality

Use the dual information to find most promising solutions to the
subproblem

Extend the master problem with the new subproblem solutions.
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Dantzig-Wolfe DecompositionDelayed Column Generation

Delayed column generation, linear master

Master problem can (and will) contain many columns

To find bound, solve LP-relaxation of master

Delayed column generation gradually writes up master
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Dantzig-Wolfe DecompositionReduced Costs
Simplex in matrix form

min {cx | Ax = b, x ≥ 0}

In matrix form: [
A 0
c −1

] [
x
z

]
=

[
b
0

]
B = {1, 2, . . . , p} basic variables

L = {1, 2, . . . , q} non-basis variables (will be set to lower bound = 0)

(B,L) basis structure
xB, xL, cB, cL
B = [A1,A2, . . . ,Ap], L = [Ap+1,Ap+2, . . . ,Ap+q]

[
B L 0
cB cL −1

]xB
xL
z

 =

[
b
0

]

BxB + LxL = b ⇒ xB + B−1LxL = B−1b ⇒
[

xL = 0
xB = B−1b
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Dantzig-Wolfe Decomposition

BxB + LxL = b ⇒ xB + B−1LxL = B−1b ⇒
[

xL = 0
xB = B−1b

Simplex algorithm sets xL = 0 and xB = B−1b (for Fundamental Theorem)
B invertible, hence rows linearly independent

The objective function is obtained by multiplying and subtracting constraints by
means of multipliers π (the dual variables)

z =

p∑
j=1

[
cj −

p∑
i=1

πiaij

]
xj +

p+q∑
j=p+1

[
cj −

p∑
i=1

πiaij

]
xj +

p∑
i=1

πibi

Each basic variable has cost null in the objective function

cj −
p∑

i=1

πiaij = 0 =⇒ π = B−1cB

Reduced costs of non-basic variables:

cj −
p∑

i=1

πiaij
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Dantzig-Wolfe Decomposition

Questions (same as for the simplex method)

Will the process terminate?

Always improving objective value. Only a finite number of basis
solutions.

Can we repeat the same pattern?

No, since the objective function is improved. We know the best solution
among existing columns. If we generate an already existing column, then
we will not improve the objective.
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Dantzig-Wolfe DecompositionBranch-and-Price
Terminology

Master Problem

Restricted Master Problem

Subproblem or Pricing Problem

Branch and cut:
Branch-and-bound algorithm using cuts to strengthen bounds.

Branch and price:
Branch-and-bound algorithm using column generation to derive bounds.
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Dantzig-Wolfe DecompositionBranch-and-price

LP-solution of master problem may have fractional solutions

Branch-and-bound for getting IP-solution

In each node solve LP-relaxation of master

Subproblem may change when we add constraints to master problem

Branching strategy should make subproblem easy to solve
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Dantzig-Wolfe Decomposition

Tailing off effect
Column generation may converge slowly in the end

We do not need exact solution, just lower bound

Solving master problem for subset of columns does not give valid lower
bound (why?)

Instead we may use Lagrangian relaxation of joint constraint

“guess” Lagrangian multipliers equal to dual variables from master
problem

30



Dantzig-Wolfe DecompositionConvergence in CG

[plot by Stefano Gualandi, Politecnico di Milano] 31



Dantzig-Wolfe Decomposition

[illustration by Stefano Gualandi, Politecnico di Milano]
(the pricing problem is for a GCP)
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Dantzig-Wolfe Decomposition

Heuristic solution (eg, in sec. 12.6)

Restricted master problem will only contain a subset of the columns

We may solve restricted master problem to IP-optimality

Restricted master is a “set-covering-like” problem which is not too
difficult to solve
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Dantzig-Wolfe DecompositionReferences
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