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First example: Send More Money
first experience on modelling in MILP and CP

SAT models

impose modelling rules (propositional calculus)

MILP models
impose modelling rules: linear inequalities and objectives
emphasis on tightness and compactness of LP, strength of bounds
(remove dominated constraints)

CP models
a large variety of algorithms communicating with each other: global
constraints
more expressiveness
emphasis on exploit substructres, include redundant constraints
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How can you solve the following Sudoku?

4 3 8 2 5
6

1 9 4
9 4 7

6 8
1 2 3

8 2 5
5

3 4 9 7 1
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Let yijt be equal to 1 if digit t appears in cell (i , j). Let N be the set
{1, . . . , 9}, and let Jkl be the set of cells (i , j) in the 3× 3 square in position
k, l . ∑

j∈N

yijt = 1, ∀i , t ∈ N,

∑
j∈N

yjit = 1, ∀i , t ∈ N,

∑
i,j∈Jkl

yijt = 1, ∀k, l = {1, 2, 3}, t ∈ N,

∑
t∈N

yijt = 1, ∀i , j ∈ N,

yijat = 1, ∀i , j ∈ given instance.
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Xij ∈ N, ∀i , j ∈ N,

Xij = at , ∀i , j ∈ given instance,
alldifferent([X1i , . . . ,X9i ]), ∀i ∈ N,

alldifferent([Xi1, . . . ,Xi9]), ∀i ∈ N,

alldifferent({Xij | ij ∈ Jkl}), ∀k, l ∈ {1, 2, 3}.
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Xij ∈ N, ∀i , j ∈ N,

Xij = at , ∀i , j ∈ given instance,
alldifferent([X1i , . . . ,X9i ]), ∀i ∈ N,

alldifferent([Xi1, . . . ,Xi9]), ∀i ∈ N,

alldifferent({Xij | ij ∈ Jkl}), ∀k, l ∈ {1, 2, 3}.

Redundant Constraint:

∑
j∈N

Xij = 45, ∀i ∈ N,

∑
j∈N

Xji = 45, ∀i ∈ N,

∑
ij∈Skl

Xij = 45, k, l ∈ {1, 2, 3}.
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Search algorithms

organize and explore the search tree

Search tree with branching factor at the top level nd and at the next
level (n − 1)d . The tree has n! · dn leaves even if only dn possible
complete assignments.

Insight: CSP is commutative in the order of application of any given set
of action (the order of the assignment does not influence)

Hence we can consider search algs that generate successors by
considering possible assignments for only a single variable at each node
in the search tree.
The tree has dn leaves.

Backtracking search

depth first search that chooses one variable at a time and backtracks when a
variable has no legal values left to assign.
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No need to copy solutions all the times but rather extensions and undo
extensions

Since CSP is standard then the alg is also standard and can use general
purpose algorithms for initial state, successor function and goal test.

Backtracking is uninformed and complete. Other search algorithms may
use information in form of heuristics
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Implementation refinements

1) [Search] Which variable should we assign next, and in what order should
its values be tried?

2) [Propagation] What are the implications of the current variable
assignments for the other unassigned variables?

3) [Search] When a path fails – that is, a state is reached in which a
variable has no legal values can the search avoid repeating this failure in
subsequent paths?
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1) Which variable should we assign next, and in what order should its values
be tried?

Select-Initial-Unassigned-Variable
degree heuristic (reduces the branching factor) also used as tied breaker

Select-Unassigned-Variable
Most constrained variable (DSATUR) = fail-first heuristic
= Minimum remaining values (MRV) heuristic (speeds up pruning)

Order-Domain-Values
least-constraining-value heuristic (leaves maximum flexibility for
subsequent variable assignments)

NB: If we search for all the solutions or a solution does not exists, then the
ordering does not matter.
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Branching (aka, Labelling)

1. Pick a variable x with at least two values
2. Pick value v from D(x)
3. Branch with

x = v
x < v

x 6= v
x ≥ v

The constraints for branching become part of the model in the
subproblems generated
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Lexicographic First-fail
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2) What are the implications of the current variable assignments for the other
unassigned variables?

Definition (Domain consistency)

A constraint C on the variables X1, . . . ,Xk is called domain consistent if for
each variable Xi and each value vi ∈ D(Xi ) (i = 1, . . . , k), there exist a value
vj ∈ D(Xj) for all j 6= i such that (d1, . . . , dk) ∈ C .

Loose definition
Domain filtering is the removal of values from variable domains that are not
consistent with an individual constraint.

Constraint propagation is the repeated application of all domain filtering of
individual constraints until no domanin reduction is possible anymore.
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DEMO

Forward checking

Bounds consistency

Domain consistency
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Sudoku DEMO
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Objective function to minimize F (X1,X2, . . . ,Xn)

Naive approach: find all solutions and choose the best

Branch and Bound approach

Solve a modified Constraint Satisfaction Problem by setting an (upper)
bound z∗ in the objective function

Dichotomic search: U upper bound, L lower bound M = U+L
2
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Discrete variables with finite domain:
complete enumeration is O(dn)

Discrete variables with infinite domains:
Impossible by complete enumeration.
Propagation by reasoning on bounds.
Eg, project planning.

Sj + pj ≤ Sk

NB: if only linear constraints, then integer linear programming

Variables with continuous domains (time intervals)
branch and reduce
NB: if only linear constraints or convex functions then mathematical
programming

structured domains (eg, sets, graphs)
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Sum constraint
Let x1, x2, . . . , xn be variables. To each variable xi , we associate a scalar
ci ∈ Q. Furthermore, let z be a variable with domain D(z) ⊆ Q. The sum
constraint is defined as

sum([x1, . . . , xn], z , c) =(d1, . . . , dn, d) | ∀i , di ∈ D(xi ), d ∈ D(z), d =
∑

i=1,...,n

cixi

 .
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Knapsack constraint

Rather than constraining the sum to be a specific value, the knapsack
constraint states the sum to be within a lower bound l and an upper bound
u, i.e., such that D(z) = [l , u]. The knapsack constraint is defined as

knapsack([x1, . . . , xn], z , c) =(d1, . . . , dn, d) | ∀i , di ∈ D(xi ), d ∈ D(z), d ≤
∑

i=1,...,n

cixi

∩(d1, . . . , dn, d) | ∀i , di ∈ D(xi ), d ∈ D(z), d ≥
∑

i=1,...,n

cixi

 .
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1. A specially-structured subset of constraints should be replaced by a
single global constraint that captures the structure, when a suitable
one exists. This produces a more succinct model and can allow more
effective filtering and propagation.

2. A global constraint should be replaced by a more specific one when
possible, to exploit more effectively the special structure of the
constraints.

3. The addition of redundant constraints (i..e, constraints that are implied
by the other constraints) can improve propagation.

4. When two alternate formulations of a problem are available, including
both (or parts of both) in the model may improve propagation.
Different variables are linked through the use of channeling constraints.

26



Modelling
CP Overview
Modeling: Global ConstraintsReferences

Hooker J.N. (2011). Hybrid modeling. In Hybrid Optimization, edited by P.M.
Pardalos, P. van Hentenryck, and M. Milano, vol. 45 of Optimization and Its
Applications, pp. 11–62. Springer New York.

van Hoeve W. and Katriel I. (2006). Global constraints. In Handbook of Constraint
Programming, chap. 6. Elsevier.

27


	Modelling
	CP Overview
	Modeling: Global Constraints

