DM826 – Spring 2011 Modeling and Solving Constrained Optimization Problems

> Lecture 5 Constraint Propagation and Local Consistency

> > Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Higher Order Consistencies

Given $\mathcal{P} = \langle X, \mathcal{DE}, \mathcal{C} \rangle$ normalized and x_i, x_j :

- the pair $(v, v_j) \in D(x_i) \times D(x_j)$ is *p*-path consistent iff forall $Y = (x_i = x_{k_1}, \dots, x_{k_p} = x_j)$ with $C_{k_q, k_{q+1}} \in C$ $\exists \tau : \tau[Y] = (v_i = v_{k_1}, \dots, v_{k_{q+1}} = v_j) \in \pi_Y(\mathcal{DE})$ and $(v_{k_q}, v_{k_{q+1}}) \in C_{k_p, k_{q+1}}$, $q = 1, \dots, p$
- the CSP \mathcal{P} is *p*-path consistent iff for any (x_i, x_j) , $i \neq j$ any locally consistent pair of values is path consistent.

Example

$$\mathcal{P} = \langle X = (x, x_2, x_3), D(x_i) = \{1, 2\}, \mathcal{C} \equiv \{x_1 \neq x_2, x_2 \neq x_3\} \rangle$$

Not path consistent: e.g., $(x_1, 1), (x_3, 2)$ $\mathcal{P} = \langle X, \mathcal{DE}, \mathcal{C} \cup \{x_1 = x_3\} \rangle$ is path consistent

2-path consistency if the path has length 2 *p*-path consistency and 2-path consistency are equivalent. Hence, sufficient to enforce consistency on paths of length 2. Given $\mathcal{P} = \langle X, \mathcal{DE}, \mathcal{C} \rangle$, and set of variables $Y \subseteq X$ with |Y| = k - 1:

- a locally consistent instantiation I on Y is k-consistent iff for any kth variable $x_{i_k} \in X \setminus Y \exists$ a value $v_{i_k} \in D(x_{i_k}) : I \cup \{x_{i_k}, v_{i_k}\}$ is locally consistent
- the CSP \mathcal{P} is k-consistent iff for all Y of k-1 variables any locally consistent I on Y is k-consistent.

Example

arc-consistent \neq 2-consistent

$$D(x_1) = D(x_2) = \{1, 2, 3\}, x_1 \le x_2, x_1 \ne x_2$$

arc consistent, every value has a support on one constraint not 2-consistent, $x_1 = 3$ cannot be extended to x_2 and $x_2 = 1$ not to x_1 with both constraints

$$D(x_i) = \{1, 2\}, C = \{(1, 1, 1, 1), (2, 2, 2, 2)\}$$

 \mathcal{P} is path consistent because no binary variable such that $X(\mathcal{C}) \subseteq Y$ not 3-consistent

- \mathcal{P} is strongly *k*-consistent iff it is *j*-consistent $\forall j \leq k$
- constructing one requires $O(n^k d^k)$ time and $O(n^{k-1} d^{k-1})$ space.
- if \mathcal{P} is strongly *n*-consistent then it is globally consistent

Weaker arc consistencies

- reduce calls to Revise in coarse-grained algorithms (Forward Checking)
- reduce amount of work of Revise (Bound consistency)

Forward checking

Given \mathcal{P} binary and $Y \subseteq X$: $|D(x_i)| = 1 \forall x_i \in Y$:

- *P* is forward checking consistent according to instantiation *I* on *Y* iff it is locally consistent and for all x_i ∈ Y, ∀x_j ∈ X ⊆ Y for all C(x_i, x_j) ∈ C is arc consistent on C(x_i, x_j).
 (all cosntraints between assigned and not assigned variables are consistent.)
- O(ed) time.
- Extension to non-binary constraints

Bound consistency

- use property that domains inherit total ordering on Z min_D(x) and max_D(x) called bounds of D(x)
- Given P and C,
 a bounded support τ on C is a tuple that satisfies C and such that for all x_i ∈ X(C), min_D(x_i) ≤ τ[x_i] ≤ max_D(x_i), that is, τ ∈ C ∪ π_{X(C)}(D^I) (instead of D)

$$D^{I}(x_{i}) = \{ v \in \mathbf{Z} \mid \min_{D}(x_{i}) \leq v \leq \max_{D}(x_{i}) \}$$

- C is bound(Z) consistent iff ∀x_i ∈ X its bounds to a bounded support on C
- C is bound(D) consistent iff ∀x_i ∈ X all its bounds belong to a support on C
- *C* is range consistent iff ∀x_i ∈ X all its values belong to a bounded support on *C*

- GAC > bound(D)>bound(Z) bound(D) and range are incomparable
- most of the time gain in efficiency

Example

$sum(x_1,\ldots,x_k,k)$

GAC is NP-complete (reduction from SubSet problem. But bound(**Z**) is polynomial: test $\forall 1 \leq i \leq n$: $\min_D(x_i) \geq k - \sum_{j \neq i} \max_D(x_j) \max_D(x_i) \leq k - \sum_{j \neq i} \min_D(x_j)$

Propagators

- Given P a reduction rule is a function f from S_P to S_P for all P' ∈ S_P, f(P') ∈ S_P.
 (most cases takes care of one a single variable and a single constraints):
- Given C in P a propagator f for C is a reduction rule from S_P to S_P that tightens only domains independently of the constraints other than C.
- Properties of propagators: Given \mathcal{P} , f can be:
 - contracting: $f(\mathcal{P}) \leq \mathcal{P}$
 - monotonic if $\mathcal{P}_1 \leq \mathcal{P}_2 \Rightarrow f(\mathcal{P}_1) \leq f(\mathcal{P}_2)$
 - idempotent if $ff(\mathcal{P}) = f(\mathcal{P})$
 - commuting if $fg(\mathcal{P}) = gf(\mathcal{P})$
 - subsumed by \mathcal{P} iff $\forall \mathcal{P}_1 \leq \mathcal{P} : f(\mathcal{P}_1) = \mathcal{P}_1$

Iteration: Let P = ⟨X, DE, C⟩ and F = {f₁,..., f_k} a finite set of propagators on S_P. An iteration of F on P is a sequence ⟨P₀, P₁,...⟩ of elements of S_P defined by

$$\mathcal{P}_0 = \mathcal{P}$$

$$\mathcal{P}_j = f_{n_j}(\mathcal{P}_{j-1})$$

where j > 0 and $n_j \in [1, \ldots, k]$.

- \mathcal{P} is stable for F iff $\forall f \in F, f(\mathcal{P}) = P$
- there may be several stable \mathcal{P} but if F are monotonic then unique
- Let P = ⟨X, DE, C⟩ and F = {f₁,..., f_k}. If ⟨P₀, P₁,...⟩is infinite iteration of F where each f ∈ F is activated infinitely often then there exists j ≥ 0 such that P_i is stable for F (j is finite)
- If all f in F are monotonic then \mathcal{P} is unique

Iteration of Reduction Rules

procedure Generic-Iteration(N, F); $G \leftarrow F$; **while** $G \neq \emptyset$ **do** select and remove g from G; **if** $N \neq g(N)$ **then** update(G); $N \leftarrow g(N)$; /* update(G) adds to G at least all functions f in $F \setminus G$ for which $g(N) \neq f(g(N))$ */

Example

$$\forall N_1 = (X, D_1, C) \in \mathcal{P}_{ND}, \forall x_i \in X, \forall c_j \in C, \ f_{i,j}(N_1) = (X, D'_1, C) \text{ with } \\ D'_1(x_i) = \pi_{\{x_i\}}(c_j \cap \pi_{X(c_j)}(D_1)) \text{ and } D'_1(x_k) = D_1(x_k), \forall k \neq i.$$

Set of propagators $F_{AC} = \{f_{ij} \mid x_i \in X, c_j \in C\}$ all monotonic. Then Generic-Iteration terminates in arc consistency closure, which is fixed point for F_{AC} .

References

Bessiere C. (2006). Constraint propagation. In Handbook of Constraint Programming, edited by F. Rossi, P. van Beek, and T. Walsh, chap. 3. Elsevier. Also as Technical Report LIRMM 06020, March 2006.