
DM826 – Spring 2011

Modeling and Solving Constrained Optimization Problems

Lecture 5
Constraint Propagation
and Local Consistency

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark



Higher Order Consistencies
Given P = 〈X ,DE , C〉 normalized and xi , xj :

the pair (v,vj) ∈ D(xi )× D(xj) is p-path consistent iff forall
Y = (xi = xk1 , . . . , xkp = xj) with Ckq ,kq+1 ∈ C
∃τ : τ [Y ] = (vi = vk1 , . . . , vkq+1 = vj) ∈ πY (DE) and
(vkq , vkq+1) ∈ Ckp,kq+1 , q = 1, . . . , p

the CSP P is p-path consistent iff for any (xi , xj), i 6= j any locally
consistent pair of values is path consistent.

Example

P = 〈X = (x,x2, x3),D(xi ) = {1, 2}, C ≡ {x1 6= x2, x2 6= x3}〉

Not path consistent: e.g., (x1, 1), (x3, 2)
P = 〈X ,DE , C ∪ {x1 = x3}〉 is path consistent

2-path consistency if the path has length 2
p-path consistency and 2-path consistency are equivalent. Hence, sufficient
to enforce consistency on paths of length 2.
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Given P = 〈X ,DE , C〉, and set of variables Y ⊆ X with |Y | = k − 1:

a locally consistent instantiation I on Y is k-consistent iff for any kth
variable xik ∈ X \ Y ∃ a value vik ∈ D(xik ) : I ∪ {xik , vik} is locally
consistent
the CSP P is k-consistent iff for all Y of k − 1 variables any locally
consistent I on Y is k-consistent.

Example

arc-consistent 6= 2-consistent

D(x1) = D(x2) = {1, 2, 3}, x1 ≤ x2, x1 6= x2

arc consistent, every value has a support on one constraint
not 2-consistent, x1 = 3 cannot be extended to x2 and x2 = 1 not to x1 with
both constraints

D(xi ) = {1, 2}, C = {(1, 1, 1, 1), (2, 2, 2, 2)}

P is path consistent because no binary variable such that X (C ) ⊆ Y
not 3-consistent



P is strongly k-consistent iff it is j-consistent ∀j ≤ k

constructing one requires O(nkdk) time and O(nk−1dk−1) space.

if P is strongly n-consistent then it is globally consistent
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Weaker arc consistencies

reduce calls to Revise in coarse-grained algorithms (Forward Checking)
reduce amount of work of Revise (Bound consistency)

Forward checking

Given P binary and Y ⊆ X : |D(xi )| = 1∀xi ∈ Y :

P is forward checking consistent according to instantiation I on Y iff it
is locally consistent and for all xi ∈ Y , ∀xj ∈ X ⊆ Y for all C (xi , xj) ∈ C
is arc consistent on C (xi , xj).
(all cosntraints between assigned and not assigned variables are
consistent.)

O(ed) time.

Extension to non-binary constraints
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Bound consistency

use property that domains inherit total ordering on Z
minD(x) and maxD(x) called bounds of D(x)

Given P and C ,
a bounded support τ on C is a tuple that satisfies C and such that for
all xi ∈ X (C ), minD(xi ) ≤ τ [xi ] ≤ maxD(xi ),
that is, τ ∈ C ∪ πX (C)(D I ) (instead of D)

D I (xi ) = {v ∈ Z | min
D

(xi ) ≤ v ≤ max
D

(xi )}

C is bound(Z) consistent iff ∀xi ∈ X its bounds to a bounded support
on C

C is bound(D) consistent iff ∀xi ∈ X all its bounds belong to a support
on C

C is range consistent iff ∀xi ∈ X all its values belong to a bounded
support on C
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GAC > bound(D)>bound(Z)
bound(D) and range are incomparable

most of the time gain in efficiency

Example

sum(x1, . . . , xk , k)

GAC is NP-complete (reduction from SubSet problem.
But bound(Z) is polynomial: test ∀1 ≤ i ≤ n:
minD(xi ) ≥ k −

∑
j 6=i maxD(xj) maxD(xi ) ≤ k −

∑
j 6=i minD(xj)
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Propagators

Given P a reduction rule is a function f from SP to SP for all P ′ ∈ SP ,
f (P ′) ∈ SP .
(most cases takes care of one a single variable and a single constraints):

Given C in P a propagator f for C is a reduction rule from SP to SP that
tightens only domains independently of the constraints other than C .

Properties of propagators:
Given P, f can be:

contracting: f (P) ≤ P
monotonic if P1 ≤ P2 ⇒ f (P1) ≤ f (P2)
idempotent if ff (P) = f (P)
commuting if fg(P) = gf (P)
subsumed by P iff ∀P1 ≤ P : f (P1) = P1
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Iteration: Let P = 〈X ,DE , C〉 and F = {f1, . . . , fk} a finite set of
propagators on SP . An iteration of F on P is a sequence 〈P0,P1, . . .〉 of
elements of SP defined by

P0 = P

Pj = fnj (Pj−1)

where j > 0 and nj ∈ [1, . . . , k].

P is stable for F iff ∀f ∈ F , f (P) = P

there may be several stable P but if F are monotonic then unique

Let P = 〈X ,DE , C〉 and F = {f1, . . . , fk}. If 〈P0,P1, . . .〉is infinite
iteration of F where each f ∈ F is activated infinitely often then there
exists j ≥ 0 such that Pj is stable for F (j is finite)

If all f in F are monotonic then P is unique
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Iteration of Reduction Rules

Example

Set of propagators FAC = {fij | xi ∈ X , cj ∈ C} all monotonic.
Then Generic-Iteration terminates in arc consistency closure, which is fixed
point for FAC .
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