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Filtering Algorithm Design Optimization Constraints

1. Filtering algorithms based on a generic algorithm
Simple “square”’ constraint using element:

element(y,[2,4,8,16,32],x),x € {1,2,3,4,5}

2. Filtering algorithms based on existing algorithms
Reuse existing algorithms for filtering (e.g., flows algorithms, dynamic
programming).

3. Filtering algorithms based on ad-hoc algorithms
Pay particular attention to incrementality and amortized complexity

4. Filtering algorithms based on model reformulation
See the Constraint Decomposition approach
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Soft constraint

A soft constraint is a constraint that may be violated. We measure the
violation of each constraint, and the goal is to minimize the total amount of
violation of all soft-constraints.

Definition

A violation measure for a soft-constraint C(xy, ..., x,) is a function
w:D(x1) x - x D(x,) = Q.

This measure is represented by a cost variable z.
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Violation measu res Optimization Constraints

@ The variable-based violation measure /,,, counts the minimum number
of variables that need to change their value in order to satisfy the
constraint.

@ The decomposition-based violation measure fi4ec counts the number of
constraints in the binary decomposition that are violated.
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Definition

Let x1, X2, ..., X,, z be variables with respective finite domains
D(x1), D(x2), ..., D(xs), D(z). Let 11 be a violation measure for the
alldifferent constraint. Then

soft-alldifferent(xy,..., Xy, Z, pt) =
{(d1,...,dn,d) | Vi.di € D(x;),d € D(z), u(dy,...,dn) < d}

is the soft alldifferent constraint with respect to 1.
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The soft-alldifferent: an example Optimization Constraints

Example
Consider the following CSP
X1 € {av b}7X2 € {a7 b}aX3 € {av b}7X4 € {a7 b7 C}7Z € z*

soft-alldifferent(xi, xo, X3, X4, (L, Z)
min z

We have for instance i, (b, b, b, b) = 3 and figec(b, b, b, b) = 6.
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Comet library of soft-constraints

Constraints Domain Range Bound
softAtLeast X
softAtMost X
softCardinality X
softStretch X

You can simulate the soft-alldifferent using the softCardinality.

A nice feature of the softCardinality is that it gives access to the reduced cost
of variable-value assignments.
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2. Optimization Constraints
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O pt| m izat | on CO n St ra i nts Optimization Constraints

Optimization Constraint bring the costs of variable-value pair into the
declarative semantic of the constraints.

The filtering does take into account the cost, and a tuple may be inconsistent
because it does not lead to a solution of “at least” a given cost.
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Constraints

minAssignment X

minCircuit X
X
X

costRegular
binpackingLB

15



Soft Constraints

F i Ite ri n g Optimization Constraints

soft_alldiff
global cardinality with costs
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Reduced-Cost Based Filtering [Focacci&aﬁ@@@}mim

Definition

Let X = {xy,...,x,} be a set of variables with corresponding finite domains
D(x1), ..., D(x,). We assume that each pair (x;, ) with j € D(x;) induces a
cost cjj. We now extend any global constraint C on X to an optimization
constraint opt_C by introducing a cost variable z and defining

opt_C(X1, ..oy Xn, 2, €) = {(d1, ..., dn, d)|(d1, ..., dn) € C(x1, ..y Xn),

Vi.di € D(x;),d € D(z), > g, < d}.
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Linear Relaxation Optimization Constraints
We introduce binary variables y;; for all i € {1,....n} and j € D(x;), such
that
X,':_j<:>_)/,'j:].7 Vi:17...,n,Vj€D(X,'),
x,-;éj@y,-j:O, ViZI,...,n,VjED(X;),
Z vi=1, Vi=1,...,n
JED(x)

+ constraint dependent linear equation

The reduced-cost are given w.r.t. the objective:

Do D i

i=1,...,njeD(x;)
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Filtering by Reduced-Cost (aka “variable ﬁf,‘é,fﬁséi"c}mim

Recall that reduced-costs estimate the increase of the objective function
when we force a variable into the solution.

Let T be the reduced cost for the variable-value pair x; = j, and let z* be
the optimal value of the current linear relaxation.

We apply the following filtering rule:

if z* +¢; > maxD(z) then D(x;) < D(x;) \ {j}.
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