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subsetsum
10 ≤ 2x1 + 3x2 + 4x3 + 5x4 ≤ 12
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Soft Constraints
Optimization ConstraintsFiltering Algorithm Design

1. Filtering algorithms based on a generic algorithm
Simple “square” constraint using element:

element(y , [2, 4, 8, 16, 32], x), x ∈ {1, 2, 3, 4, 5}

2. Filtering algorithms based on existing algorithms
Reuse existing algorithms for filtering (e.g., flows algorithms, dynamic
programming).

3. Filtering algorithms based on ad-hoc algorithms
Pay particular attention to incrementality and amortized complexity

4. Filtering algorithms based on model reformulation
See the Constraint Decomposition approach
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1. Soft Constraints

2. Optimization Constraints
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Soft Constraints
Optimization ConstraintsSoft Constraints

Soft constraint
A soft constraint is a constraint that may be violated. We measure the
violation of each constraint, and the goal is to minimize the total amount of
violation of all soft-constraints.

Definition

A violation measure for a soft-constraint C (x1, . . . , xn) is a function

µ : D(x1)× · · · × D(xn)→ Q.

This measure is represented by a cost variable z .
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Soft Constraints
Optimization ConstraintsViolation measures

The variable-based violation measure µvar counts the minimum number
of variables that need to change their value in order to satisfy the
constraint.

The decomposition-based violation measure µdec counts the number of
constraints in the binary decomposition that are violated.
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Soft Constraints
Optimization ConstraintsThe soft-alldifferent

Definition
Let x1, x2, ..., xn, z be variables with respective finite domains
D(x1),D(x2), ...,D(xn),D(z). Let µ be a violation measure for the
alldifferent constraint. Then

soft-alldifferent(x1, ..., xn, z , µ) =

{(d1, ..., dn, d) | ∀i .di ∈ D(xi ), d ∈ D(z), µ(d1, ..., dn) ≤ d}

is the soft alldifferent constraint with respect to µ.
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Soft Constraints
Optimization ConstraintsThe soft-alldifferent: an example

Example

Consider the following CSP

x1 ∈ {a, b}, x2 ∈ {a, b}, x3 ∈ {a, b}, x4 ∈ {a, b, c}, z ∈ Z+

soft-alldifferent(x1, x2, x3, x4, µ, z)
min z

We have for instance µvar (b, b, b, b) = 3 and µdec(b, b, b, b) = 6.
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Soft Constraints
Optimization ConstraintsComet library of soft-constraints

Constraints Domain Range Bound
softAtLeast X
softAtMost X
softCardinality X
softStretch X

You can simulate the soft-alldifferent using the softCardinality.

A nice feature of the softCardinality is that it gives access to the reduced cost
of variable-value assignments.
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1. Soft Constraints

2. Optimization Constraints
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Optimization Constraint bring the costs of variable-value pair into the
declarative semantic of the constraints.

The filtering does take into account the cost, and a tuple may be inconsistent
because it does not lead to a solution of “at least” a given cost.
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Soft Constraints
Optimization ConstraintsOptimization Constraints in Comet

Constraints
minAssignment X
minCircuit X
costRegular X
binpackingLB X
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soft_alldiff
global cardinality with costs
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Soft Constraints
Optimization ConstraintsReduced-Cost Based Filtering [Focacci&all1999]

Definition

Let X = {x1, ..., xn} be a set of variables with corresponding finite domains
D(x1), ...,D(xn). We assume that each pair (xi , j) with j ∈ D(xi ) induces a
cost cij . We now extend any global constraint C on X to an optimization
constraint opt_C by introducing a cost variable z and defining

opt_C(x1, ..., xn, z , c) = {(d1, ..., dn, d)|(d1, ..., dn) ∈ C (x1, ..., xn),

∀i .di ∈ D(xi ), d ∈ D(z),
∑

i=1,...,n

xidi ≤ d}.
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Soft Constraints
Optimization ConstraintsLinear Relaxation

We introduce binary variables yij for all i ∈ {1, ..., n} and j ∈ D(xi ), such
that

xi = j ⇔ yij = 1, ∀i = 1, . . . , n, ∀j ∈ D(xi ),

xi 6= j ⇔ yij = 0, ∀i = 1, . . . , n, ∀j ∈ D(xi ),∑
j∈D(xi )

yij = 1, ∀i = 1, . . . , n.

+ constraint dependent linear equation

The reduced-cost are given w.r.t. the objective:∑
i=1,...,n

∑
j∈D(xi )

cijyij
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Soft Constraints
Optimization ConstraintsFiltering by Reduced-Cost (aka “variable fixing”)

Recall that reduced-costs estimate the increase of the objective function
when we force a variable into the solution.

Let c̄ij be the reduced cost for the variable-value pair xi = j , and let z∗ be
the optimal value of the current linear relaxation.

We apply the following filtering rule:

if z∗ + c̄ij > maxD(z) then D(xi )← D(xi ) \ {j}.
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