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Search
Random RestartBacktracking: Terminology

backtracktracking: depth first search of a search tree

branching strategy: method to extend a node in the tree

node visited if generated by the algorithm

constraint propagation prunes subtrees

deadend: if the node does not lead to a solution

thrashing repeated exploration of failing subtree differening only in
assignments to variables irrelevant to the failure of the subtree.
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Search
Random RestartSimple Backtracking

at level j ←− instantiation I = {x1 = a1, . . . , xj = aj}

branches: different choices for an unassigned variable: I ∪ {x = a}

branching constraints P = {b1, . . . , bj}, bi , 1 ≤ i ≤ j

P ∪ {b1
j+1}, . . . ,P ∪ {bk

j+1} extension of a node by mutually exclusive
branching constraints
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Search
Random RestartBranching strategies

Assume a variable order and a value order (e.g., lexicographic):

A. Generic branching with unary constraints:

1. Enumeration, d -way

x = 1 | x = 2 | . . .

2. Binary choice points, 2-way

x = 1 | x 6= 1

3. Domain splitting
x ≤ 3 | x 3

 d -way can be simulated by 2-way with no loss of efficiency. The contrary
does not old.

 2-way seems theoretically more powerful than d -way
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Random RestartBranching strategies

B. Problem specific:

Disjunctive scheduling

Zykov’s branching rule for graph coloring
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Search
Random RestartConstraint propagation

constaint propagation performed at each node: mechanism to avoid
thrashing

typically best to enfore domain based but with some exceptions (e.g.,
forward checking is best in SAT)

nogood constraints added after deadend is encountered:

set of assignements and branching constraints that is not consistnet with
a solution

backtracking has laready ruled out the subtree but inserting nogood
constraints the hope is they contribute to propagate

e.g., I = {x1 = 2, x2 = 5, x3 = 3, x5 = 4} and x = 6 deadend
post ¬{x1 = 2, x2 = 5, x3 = 3, x5 = 4}
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Random RestartBackjumping

standard backtracking: chronological backtracking

non-chronological backtracking: retracts the closest branching constraint
that bears responsability.
backjumping or intelligent backtracking:
P = {b1, . . . , bj}
J(P) ⊆ P jumpback nogood for P
largest i 1 ≤ i ≤ j : bi ∈ J(P)
jumpback and retracts bi and all those posted after bi
and delete nogoods recorded after bi
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Search
Random RestartRestoration Service

What do we have at the nodes of the search tree?
A computational space:
1. Partial assignments of values to variables
2. Unassigned variables
3. Suspended propagators

How to restore when backtracking?

Trailing Changes to nodes are recorded such that they can be undone
later

Copying A copy of a node is created before the node is changed

Recomputation If needed, a node is recomputed from scratch
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Search
Random RestartVariable-Value ordering

Possible goals
Minimize the underlying search space

Minimize expected depth of any branch

Minimize expected number of branches

Minimize size of search space explored by backtracking algorithm
(intractable to find “best” variable)
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Random RestartVariable ordering

dynamic vs static

it is optimal if it visits the fewest number of nodes in the search tree

finding optimal ordering is hard

dynamic heuristics:

based on domain size textrem(x |P) remaining after propagation

dom + deg (# constraints that involve a variable still unassigned)
dom
wdeg weight incremented when a constraint is responsible for a deadend

min regret

structure guided var ordering:
instantiate first variables that decompose the constraint graph
graph separators: subset of vertices or edges that when removed
separates the graph into disjoint subcomponents
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Search
Random RestartValue ordering

estimate number of solutions:
counting solutions to a problem with tree structrure can be done in
polytime
reduce the graph to a tree by dropping constraints

if optimization constraints: reduced cost to rank values
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Search
Random RestartVariants to best search

Limite Discrepancy search

Discrepancy: when the search does not follow the value ordering
heuristic and does not take the left most branch out of a node.

explopre tree by iteratively increasing number of discrepancies, preferring
discrepancies near the root
(thus easier to recover from early mistakes)

Ex: ith iteration: visit all leaf nodes up to i discrepancies
i = 0, 1, . . . , k (if k ≥ n depth trhen alg is complete)

Interleaved depth first search
each subtree rooted at a branch is searched for a given time-slice using
depth-first.
If no solution found, search suspended, next branch active.
Upon suspending in the last the first again becomes active.
Similar idea in credit based.
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Random RestartAlgorithm Survival Analysis

Run time distributions

T ∈ [0,∞]

F (t) = Pr{T ≤ t} F : [0,∞] 7→ [0, 1]

f (t) = dF (t)
dt pdf

S(t) = Pr{T > t} = 1− F (t)
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Random RestartCharacterization of runtime

Parametric models used in the analysis of run-times to
exploit the properties of the model (eg, the character of tails and completion
rate)

Procedure:

choose a model
apply fitting method
maximum likelihood estimation method:

max
θ∈Θ

log
n∏

i=1

p(Xi , θ)

test the model
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Search
Random RestartParametric models

The distributions used are [Frost et al., 1997; Gomes et al., 2000]:
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Random RestartCharacterization of Run-time

Motivations for these distributions:

qualitative information on the completion rate (= hazard function)
empirical good fitting

To check whether a parametric family of models is reasonable the idea is to
make plots that should be linear. Departures from linearity of the data can be
easily appreciated by eye.

Example: for an exponential distribution:

log S(t) = −λt S(t) = 1− F (t) is the survivor function

 the plot of log S(t) against t should be linear.

Similarly, for the Weibull the cumulative hazard function is linear on a log-log
plot
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Random RestartCharacterization of Run-time

Example

Graphical inspection for the two censored distributions from the previous
example on 2-edge-connectivity.
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Random RestartCharacterization of Run-time

Example

Graphical inspection for the two censored distributions from the previous
example on 2-edge-connectivity.
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Search
Random RestartExtreme Value Statistics

Extreme value statistics focuses on characteristics related to the tails of
a distribution function

1. extreme quantiles (e.g., minima)
2. indices describing tail decay

‘Classical’ statistical theory: analysis of means.
Central limit theorem: X1, . . . ,Xn i.i.d. with FX

√
n

X̄ − µ√
Var(X )

D−→ N(0, 1), as n→∞

Heavy tailed distributions: mean and/or variance may not be finite!
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Random RestartCharacterization of Run-time

Heavy Tails

Gomes et al. [2000] analyze the mean computational cost to find a solution
on a single instance

On the left, the observed behavior calculated over an increasing number of
runs.
On the right, the case of data drawn from normal or gamma distributions

The use of the median instead of the mean is recommended
The existence of the moments (e.g., mean, variance) is determined by
the tails behavior: a case like the left one arises in presence of long tails
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Random RestartExtreme Value Statistics

Extreme values theory

X1,X2, . . . ,Xn i.i.d. FX

Ascending order statistics X (1)
n ≤ . . . ≤ X (n)

n

For the minimum X (1)
n it is FX (1)

n
= 1− [1− F (1)

X ]n but not very useful in
practice as FX unknown
Theorem of [Fisher and Tippett, 1928]:
“almost always” the normalized extreme tends in distribution to a
generalized extreme distribution (GEV) as n→∞.

In practice, the distribution of extremes is approximated by a GEV:

FX (1)
n

(x) ∼

{
exp(−1(1− γ x−µ

σ )−1/γ , 1− γ x−µ
σ > 0, γ 6= 0

exp(− exp( x−µ
σ )), x ∈ R, γ = 0

Parameters estimated by simulation by repeatedly sampling k values
X1n, . . . ,Xkn, taking the extremes X (1)

kn , and fitting the distribution.
γ determines the type of distribution: Weibull, Fréchet, Gumbel, ...
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Random RestartExtreme Value Statistics

Tail theory

Work with data exceeding a high threshold.
Conditional distribution of exceedances over threshold τ

1− Fτ (y) = P(X − τ > y | X > τ) =
P(X > τ + y)

P(X > τ)

If the distribution of extremes tends to GEV distribution then there exist
a Pareto-type function such that for some γ > 0

1− FX (x) = x−
1
γ `F (x), x > 0,

with `F (x) a slowly varying function at infinity.

In practice, fit a function Cx−
1
γ to the exceedances:

Yj = Xi − τ , provided Xi > τ , j = 1, . . . ,Nτ .
γ determines the nature of the tail
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Random RestartCharacterization of Run-time

Heavy Tails

The values estimated for γ give indication on the tails:

γ > 1: long tails hyperbolic decay (the completion rate decreases with t)
and mean not finite
γ < 1: tails exhibit exponential decay

Graphical check using a log-log plot:

heavy tail distributions approximate linear decay,
exponentially decreasing tail has faster-than linear decay

Long tails explain the goodness of random restart. Determining the cutoff
time is however not trivial.
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