DM826 – Spring 2011 Modeling and Solving Constrained Optimization Problems

Lecture 8 Search

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

[Based on slides by Stefano Gualandi, Politecnico di Milano]

Outline

1. Search

2. Random Restart

Search

Complete

- backtracking
- dynamic programming
- incomplete
 - local search

Backtracking: Terminology

- backtracktracking: depth first search of a search tree
- branching strategy: method to extend a node in the tree
- node visited if generated by the algorithm
- constraint propagation prunes subtrees
- deadend: if the node does not lead to a solution
- thrashing repeated exploration of failing subtree differening only in assignments to variables irrelevant to the failure of the subtree.

- at level $j \leftarrow$ instantiation $I = \{x_1 = a_1, \dots, x_j = a_j\}$
- branches: different choices for an unassigned variable: $I \cup \{x = a\}$
- branching constraints $\mathcal{P} = \{b_1, \ldots, b_j\}, b_i, 1 \le i \le j$
- $\mathcal{P} \cup \{b_{j+1}^1\}, \dots, \mathcal{P} \cup \{b_{j+1}^k\}$ extension of a node by mutually exclusive branching constraints

Branching strategies

Assume a variable order and a value order (e.g., lexicographic):

- A. Generic branching with unary constraints:
 - 1. Enumeration, *d*-way

$$x = 1 \quad | \quad x = 2 \quad | \dots$$

2. Binary choice points, 2-way

$$x = 1 | x \neq 1$$

3. Domain splitting

$$x \leq 3 \mid x 3$$

- → *d*-way can be simulated by 2-way with no loss of efficiency. The contrary does not old.
- \sim 2-way seems theoretically more powerful than *d*-way

- B. Problem specific:
 - Disjunctive scheduling
 - Zykov's branching rule for graph coloring

Constraint propagation

- constaint propagation performed at each node: mechanism to avoid thrashing
- typically best to enfore domain based but with some exceptions (e.g., forward checking is best in SAT)
- nogood constraints added after deadend is encountered:
 - set of assignements and branching constraints that is not consistnet with a solution
 - backtracking has laready ruled out the subtree but inserting nogood constraints the hope is they contribute to propagate
 - e.g., $I = \{x_1 = 2, x_2 = 5, x_3 = 3, x_5 = 4\}$ and x = 6 deadend post $\neg \{x_1 = 2, x_2 = 5, x_3 = 3, x_5 = 4\}$

- standard backtracking: chronological backtracking
- non-chronological backtracking: retracts the closest branching constraint that bears responsability.
 backjumping or intelligent backtracking:
 𝒫 = {b₁,..., b_j}
 J(𝒫) ⊆ 𝒫 jumpback nogood for 𝒫
 largest i 1 ≤ i ≤ j : b_i ∈ J(𝒫)
 jumpback and retracts b_i and all those posted after b_i
 and delete nogoods recorded after b_i

Restoration Service

What do we have at the nodes of the search tree? A computational space:

- 1. Partial assignments of values to variables
- 2. Unassigned variables
- 3. Suspended propagators

How to restore when backtracking?

- Trailing Changes to nodes are recorded such that they can be undone later
- Copying A copy of a node is created before the node is changed
- Recomputation If needed, a node is recomputed from scratch

Possible goals

- Minimize the underlying search space
- Minimize expected depth of any branch
- Minimize expected number of branches
- Minimize size of search space explored by backtracking algorithm (intractable to find "best" variable)

Variable ordering

dynamic vs static

- it is optimal if it visits the fewest number of nodes in the search tree
- finding optimal ordering is hard

dynamic heuristics:

- based on domain size $textrem(x|\mathcal{P})$ remaining after propagation
- dom + deg (# constraints that involve a variable still unassigned)
- $\bullet \ \frac{dom}{wdeg}$ weight incremented when a constraint is responsible for a deadend
- min regret
- structure guided var ordering: instantiate first variables that decompose the constraint graph graph separators: subset of vertices or edges that when removed separates the graph into disjoint subcomponents

• estimate number of solutions:

counting solutions to a problem with tree structrure can be done in polytime

reduce the graph to a tree by dropping constraints

• if optimization constraints: reduced cost to rank values

Variants to best search

• Limite Discrepancy search

Discrepancy: when the search does not follow the value ordering heuristic and does not take the left most branch out of a node.

explopre tree by iteratively increasing number of discrepancies, preferring discrepancies near the root (thus easier to recover from early mistakes)

Ex: *i*th iteration: visit all leaf nodes up to *i* discrepancies i = 0, 1, ..., k (if $k \ge n$ depth trhen alg is complete)

• Interleaved depth first search

each subtree rooted at a branch is searched for a given time-slice using depth-first.

If no solution found, search suspended, next branch active.

Upon suspending in the last the first again becomes active.

Similar idea in credit based.

Outline

1. Search

2. Random Restart

Algorithm Survival Analysis

Run time distributions

- $T \in [0,\infty]$
- $F(t) = \Pr\{T \le t\}$ $F: [0, \infty] \mapsto [0, 1]$
- $f(t) = \frac{dF(t)}{dt}$ pdf
- $S(t) = \Pr\{T > t\} = 1 F(t)$

Characterization of runtime

Parametric models used in the analysis of run-times to exploit the properties of the model (eg, the character of tails and completion rate)

Procedure:

- choose a model
- apply fitting method maximum likelihood estimation method:

$$\max_{\theta \in \Theta} \log \prod_{i=1}^{n} p(X_i, \theta)$$

test the model

Parametric models

The distributions used are [Frost et al., 1997; Gomes et al., 2000]:

Characterization of Run-time

Motivations for these distributions:

- qualitative information on the completion rate (= hazard function)
- empirical good fitting

To check whether a parametric family of models is reasonable the idea is to make plots that should be linear. Departures from linearity of the data can be easily appreciated by eye.

Example: for an exponential distribution:

 $\log S(t) = -\lambda t$ S(t) = 1 - F(t) is the survivor function

 \rightsquigarrow the plot of log S(t) against t should be linear.

Similarly, for the Weibull the cumulative hazard function is linear on a log-log plot

Characterization of Run-time Example

Graphical inspection for the two censored distributions from the previous example on 2-edge-connectivity.

Characterization of Run-time Example

```
Search
Random Restart
```

Graphical inspection for the two censored distributions from the previous example on 2-edge-connectivity.

Time to find the optimum

Extreme Value Statistics

• Extreme value statistics focuses on characteristics related to the tails of a distribution function

- 1. extreme quantiles (e.g., minima)
- 2. indices describing tail decay

• 'Classical' statistical theory: analysis of means. Central limit theorem: X_1, \ldots, X_n i.i.d. with F_X

$$\sqrt{n}rac{ar{X}-\mu}{\sqrt{Var(X)}} \stackrel{D}{
ightarrow} N(0,1), \qquad ext{as } n
ightarrow \infty$$

Heavy tailed distributions: mean and/or variance may not be finite!

Characterization of Run-time Heavy Tails

Gomes et al. [2000] analyze the mean computational cost to find a solution on a single instance

On the left, the observed behavior calculated over an increasing number of runs.

On the right, the case of data drawn from normal or gamma distributions

- The use of the median instead of the mean is recommended
- The existence of the moments (*e.g.*, mean, variance) is determined by the tails behavior: a case like the left one arises in presence of long tails

Extreme Value Statistics

Extreme values theory

• X_1, X_2, \ldots, X_n i.i.d. F_X Ascending order statistics $X_n^{(1)} \leq \ldots \leq X_n^{(n)}$

- For the minimum $X_n^{(1)}$ it is $F_{X_n^{(1)}} = 1 [1 F_X^{(1)}]^n$ but not very useful in practice as F_X unknown
- Theorem of [Fisher and Tippett, 1928]:
 "almost always" the normalized extreme tends in distribution to a generalized extreme distribution (GEV) as n → ∞.

In practice, the distribution of extremes is approximated by a GEV:

$$F_{X_n^{(1)}}(x) \sim \begin{cases} \exp(-1(1-\gamma\frac{x-\mu}{\sigma})^{-1/\gamma}, & 1-\gamma\frac{x-\mu}{\sigma} > 0, \gamma \neq 0\\ \exp(-\exp(\frac{x-\mu}{\sigma})), & x \in \mathbf{R}, \gamma = 0 \end{cases}$$

Parameters estimated by simulation by repeatedly sampling k values X_{1n}, \ldots, X_{kn} , taking the extremes $X_{kn}^{(1)}$, and fitting the distribution. γ determines the type of distribution: Weibull, Fréchet, Gumbel, ...

Extreme Value Statistics

Tail theory

- Work with data exceeding a high threshold.
- $\bullet\,$ Conditional distribution of exceedances over threshold τ

$$1 - F_{\tau}(y) = P(X - \tau > y \mid X > \tau) = \frac{P(X > \tau + y)}{P(X > \tau)}$$

• If the distribution of extremes tends to GEV distribution then there exist a Pareto-type function such that for some $\gamma>0$

$$1 - F_X(x) = x^{-\frac{1}{\gamma}} \ell_F(x), \qquad x > 0,$$

with $\ell_F(x)$ a slowly varying function at infinity.

In practice, fit a function $Cx^{-\frac{1}{\gamma}}$ to the exceedances: $Y_j = X_i - \tau$, provided $X_i > \tau$, $j = 1, ..., N_{\tau}$. γ determines the nature of the tail

Characterization of Run-time Heavy Tails

The values estimated for γ give indication on the tails:

- $\gamma > 1$: long tails hyperbolic decay (the completion rate decreases with t) and mean not finite
- $\gamma < 1$: tails exhibit exponential decay

Graphical check using a log-log plot:

- heavy tail distributions approximate linear decay,
- exponentially decreasing tail has faster-than linear decay

Long tails explain the goodness of random restart. Determining the cutoff time is however not trivial.

References

- Frost D., Rish I., and Vila L. (1997). Summarizing CSP hardness with continuous probability distributions. In *Proceedings of AAAI/IAAI*, pp. 327–333.
- Gent I.P., Petrie K.E., and Puget J.F. (2006). **Symmetry in constraint programming**. In *Handbook of Constraint Programming*, edited by F. Rossi, P. van Beek, and T. Walsh, chap. 10, pp. 329–376. Elsevier.
- Gomes C., Selman B., Crato N., and Kautz H. (2000). Heavy-tailed phenomena in satisfiability and constraint satisfaction problems. *Journal of Automated Reasoning*, 24(1-2), pp. 67–100.
- Hüsler J., Cruz P., Hall A., and Fonseca C.M. (2003). On optimization and extreme value theory. *Methodology and Computing in Applied Probability*, 5, pp. 183–195.
- Ovacik I.M., Rajagopalan S., and Uzsoy R. (2000). Integrating interval estimates of global optima and local search methods for combinatorial optimization problems. *Journal of Heuristics*, 6(4), pp. 481–500.