MSS ON HYPERGRAPHS

DMS811 Exam Project

October 26, 2008

Professor: Marco Chiarandini

Department of Mathematics and Computer Science
University of Southern Denmark, Odense

Contents

Contents

1 Introduction

9 (Snctractiion baoirictioe

2.1 Some basic 0bServations o e e e e e
2 ~MSS on Hypergraphs

o Local search

3.1 More observations L L.
3.2 Locall
3.3 Local2 . . .

4 Stochastic local search methods

4.1 Random restart (RSS)DM811 Exam PrOjeCt

4.2 Tterated local search (ILS) Sven.Simonsen
5 Experiments October 26, 2008

5.1 Testl

5.2 Test2 . . .

5.3 Test3 . . . e

6 Conclusion

Professor: Marco Chiarandini

Department of Mathematics and Computer Science
University of Southern Denmark, Odense

1 INTRODUCTION

1 Introduction

This project deals with the uniform and unweighted version of the maximum stable set problem
on hypergraphs.

It looks at heuristic methods that aim to find good candidate solutions fast and analyses aspects
of the problem in an attempt to improve said methods both in matters of speed and solution qual-
ity. Implementations of the methods will be described and competing methods will be compared.

The heuristics discussed are the following:

s contrnetio VI QN Y REIGIrARNS i oo vertcs

randomly until the set is stable.

A construction heuristic that starts with an empty set and adds vertices randomly while main-
taining a stable set. This is done until the set is maximal.

A local search heuristic that tries to improve a maximal stable set by exploring the neighborhood
of (1,x)-swaps.

An improvement of this local SQM &ilxﬁ%tﬁﬁ]np o[@s}%tns about the problems struc-
ture: Sven Simonsen

A random restart stochastic local seach metho

Octoher 26, 2008

An iterated local search method where escape steps are taken by adding vertices to the solution,
restabilise and then remaximilise.

The instances used have been renamed to avoid clutter on plots. u-1000-10-1000 will be called
T1 (for Type 1), u-100-10-10000 is T2, u-1000-50-1000 is T3 and u-1000-50-10000 is T4. The

instance u-1000-50-1000-05.mss woupd thusype calle: by the shorter name T3-05 (for Type 3
instance 5).

Department of Mathematics and Computer Science
University of Southern Denmark, Odense

2 CONSTRUCTION HEURISTICS

2 Construction heuristics

2.1 Some basic observations

Choosing as many vertices of degree zero or one as possible to be part of the solution is never
a bad choice, since removing such vertices only enables us to add max 1 other vertice to the
solution which is no improvement of the solution and can not lead to one either. Armed with
this insight we can make this greedy choice once for anv given instance and save it as a basis for
later restarts of the heuristic.

If you want toMr@’&ta@ﬂ ad y@etF @eﬁ&l@h@tion can never allow
bk before.

new additions of vertices that were not avai

2.2 ConstructA

A first cursory look at the problem suggested checking whether a vertex could expand your
candidate solution without destabilizing it would be costly, so I tried looking at the problem
from the opposite direction. Since a stable set is a set containing no complete edge, why not
start with the set of all vertices and remove vertices until stability is reached.

DM811 Exam Project
ConstructA does this by randomly cg\zgﬁ ?I‘ﬁﬁ Hg;y tained in the candidate solution
m the solufion. ?ince at

and removing one of it’s vertices fro east one edge is satisfied in every
move we are sure that constructA will always reach stability, at which point the algorithm ter-

minates. October 26, 2008

To efficiently find the vertices in an edge and the edges a given vertex is part of the algorithm
works with an array of edges containing the list of all vertices in that edge for every edge and
likewise an array of vertices containing the edges that a vertex is part of. These data structures
do not change and are thus only computed once. During every run a list of fully contained edges
is maintained and consulted when a new edge has to be chosen randomly.

Professor: Marco Chiarandini

Pseudo code for constructA:

Data: An array of lists: edges

An array of lists: vertices

Result: A list of vertices: solution

Start

Create list of all vertices: solution;
Create list of fully contained edges: fullE;

while fullE is not empty do
comp «— a random vertex from a random edge in fullk;

remove comp from solution;
for All edges in vertices[comp] do
| remove the edge from fullE;
end Department of Mathematics and Computer Science
end University of Southern Denmark, Odense
return solution;

2 CONSTRUCTION HEURISTICS

This algorithm takes O(|E|) time to complete with the right implementation since it looks at
every edge exactly once and subsequently removes it from further consideration.

ConstructA
T4-06 — HI A
e MSS on Hypergraphsle
J3-06 Hl e
9r3-03 e
'@Fz—oa SRR [REE
T2-03 { @ -[]]-®
T1-06 — q._l:[l_@
T1-03 a -[[]- 0
s : g :
© (o)}

DM811 Exam Project
Sven Simonsen

Figure 1: ConstructA’s performance on sample instances with 500 iterations per seed and 2

seeds. October 26, 2008

We see it is an efficient way of getting first useful results, it beats the SCIP on most Types
of instances taking under one second running time. But the method is open to improvement
since found solution are often not even maximal. It is also noteworthy that constructA has the
theoretical possibility to hit every maximal stable set in any given instance.

Professor: Marco Chiarandini
2.3 Constructl

Since constructA did not tend to terminate in maximal stable sets there was definitely room
for improvement, so I went back to the initial idea of adding vertices until the cadidate was
maximal. Checking from scratch if an edge becomes unstable when a vertex is added would take
O(b) time (where b is the common edge size in the current instance) and this would have to be
done for every edge that contains the vertex in question.

Instead we store the amount of vertices from the solution that belong to a given edge in an array
and update this information every time we add a new vertex to our solution candidate. Now
when we try if a vertex can expand our solution we just have to look these values up for every
edge it is contained in, if none of these is critical we can safely add the vertex to our solution and
update values accordingly. Alternatively one can maintain a list of valid vertices and remove

every vertice in an edge g@ﬁ%rﬁh@nll%ﬁ Wa?ﬁgﬁlﬁcghgnﬁdégrhﬁﬁ%?‘?c%#&gal’ this is what I did in

my implementation. University of Southern Denmark, Odense

2 CONSTRUCTION HEURISTICS
Using these structures the algorithm for constructl would look like this:

Data: An array of lists: edges

An array of lists: vertices

Result: A list of vertices: solution

Start

Greedily add all vertices of deg<<2 to solution;
Cugatean amacof values forthe odgas saluoh
Create a list of vertices we are free to choose: freeV;
while there a

w M SS-on Hypergraphs

for All edges in vertzces[vert] do
IERUNSAIIR NUR PN N
if The edge is critical (check valueE) then
| Remove all vertices in edges|edge| from freeV;
end

end

Remove vert from freeV;
end

Return solution;

DM811 Exam Project

Here we are looking at running the Tvg{le loop @i&]&tlmes checkmg bx |E|/|V| in average per
iteration and removing one vertex. 0. RSELD: that we will check every edge at

most b times or once per vertex in it, so we look up edges O(b|E|) times. In total this results in

O(|V]+b|E[) running time for constr@dtober 26, 2008

Constructl compared to ConstructA

Professor: Marco Chiarandini

600
700
900

result

Figure 2: Constructl (skgg&&png}@(&)mgm%g%ﬁd)w@r(gbi‘g}%éame samples with 1000

iterations per instance. University of Southern Denmark, Odense

3 LOCAL SEARCH

Results are always maximal which could be the reason that Constructl beats constructA by a
considerable margin. The single runs are a little slower than with constructA (ConstructA can
do 500 iterations in under a second even on Type 4 instances while Constructl can "only" do
100 per second on those) but overall fast enough to be used as a basis for local search. This is
especially true since even single runs of Constructl tend to beat 100 iterations of ConstructA.
Like with ConstructA we observe that Constructl can result in every maximal set in the in-
stance. This is a nice property when one wants to use it as a basis for random restarts of local
search. since we avoid always ending up in the same local optima,

s Loea MRS ON Hypergraphs

D | N T
oor

VIO T C O T Ve U TO T

The neighborhood we will be looking at is that of a (1,x)-swap, meaning you remove one vertex
from the solution and then try to add as many of the adjacent vertices to the solution as possible.
We will soon see why it is efficient to always maintain a maximal stable set when working with
this kind of neighborhood.

DM811 Exam Project

Sven Simonsen
When pondering a local search heuristic for MSS on hypergraphs I realised that the main differ-

ence to normal graphs were the many stages an %e be in. In normal graphs an edge is
either empty or critical, either of Whgcigpﬁer cg ke%%‘)l onstant time allowing quick assess-
ment of different swaps. This is more complicated when dealing with hypergraphs. Assuming
we want to look at if removing a vertex from the solution can lead to improvement, what we
have to do is count the adjacent vertices that could be added once we remove the vertex we are

checking. Bear in mind that depending on instance the list of adjacent vertices could be quite
long and to check if their addition would be valid we have to count their adjacent vertices as well.

3.2 Locall

Since we are ultimately only inte?ggtfgasﬂ{:ml\g%ﬁ?ap&%f?gg%, as these are strictly better can-
didates, we can safely restrict our local search to start with and maintain a maximal stable set.
This restricts the possible situations any local search step can start in, to a smaller set with
some nice properties that can be exploited to remove the need to look up Q(b?) vertices every
time we wish to evaluate a remove. We will again keep track of the amount of vertices from the
solution that belong to a given edge.

Since we maintain a maximal stable set we will only have to consider the effect on edges that
have exactly one open position prior to our move. We will call these edges critical and since we
are keeping track of edge value they are easy to identify. If an edge is not critical we are certain
that it is not this edge that prevents the vertices in it from being added to the solution, so since
we maintain maximality we don’t have to check any vertex from this edge and can safely move
on to the next.

Department of Mathematics and Computer Science
Locall implements this reasqpmigmithot SostherpOsaAmMErk, Otkingy, the pseudo code looks like
this:

3 LOCAL SEARCH

Data: An array of lists: edges

An array of lists: vertices

A list of vertices: solution

Result: A list of vertices: solution
Start

Create an array of edge values from solution: valueE;
m Thoro gro cofs]] piahlo porticoc o

vert «— random viable vertex;
improve <« 0; for All edges that contain vert do

uMSS on-Hypergraphs

‘ if vertex can be added to solution once vert is removed then

| IEAAAv AtV I

‘ end
end
end
end

if émprove > 1 then
remove vert from solution;

maximize solution by addj ighbors of vert; .
update valuE: DS TT Exam Project
mark all vertices in solution asv@ﬁ, Simonsen

end
else

| mark vert as not viable; October 26, 2008
end

end
return solution;

A call to Locall starts by creating the correct edge value array wich takes O(b|E|) time. After-
wards the while loop is run until we reach a local maxima, how often this happens is hard to
approximate but we can take a closer look on the runtime of a single improvement consisting
of at most O(|V]) iterations. Unddotassersddateons Warandinie, every vertex of the solution as
removal candidate once and then have to look at all it’s neighbours, but since every edge can
only be taken into consideration b times at most O(b?|E|) vertices are checked for addition to
the solution. Checking if a vertex can be added takes constant time times it’s degree O(|E]),
because we use the edge value array. Finding an improvement thus takes O(|V|b?|E[?) time
while updating the arrays after the (1,x)-swap takes O(|E|?) time. While these bounds are not
very tight they show us that one local improvement is done in polytime in other words we have
a PLS-problem.

3.3 Local2

It is obvious that locall does some redundant checking of possible removes so we would expect
a speedup if we could identify exactly which vertices need to be rechecked after a (1,x)-swap.
. D(ﬂoartnﬂegt of(lj\l/lat ematics and Com(g)ut%r.ISmence
The x vertices added to tie solutio OPE HD Lew POSSL ilities SO we concentrate on the
Unlversﬁy of Southérn Denmark, Odense
vertex that was removed.

3 LOCAL SEARCH

Edges that are not critical after the move give us no new opportunities, but the only ones that
contain the removed vertex and remain critical are those that where critical before and con-
tain a new vertex added in the move. Vertices in these edges don’t change status either as the
removed vertex can not be inserted into the solution again without removing one vertex from
every critical edge that holds one of the x added vertices. In fact not even the added vertices
should be considered for removal as vertices adjacent to them would have been added before if

remove all new vertices).

so wtat s NS QR Y PRIGEAPRNS o o e vertics

adjacent to the removed vertex, vertices that we tried to add but could not without violating

stabilitv. _These vertices are now contained in fewer critical edoes than before the move and
could maybe be added in a later move where one of the vertices adjacent to them is removed
from the solution. Because of this vertices in the solution that are adjacent to vertices we tried
but were unable to add during our move should be reconsidered for removal.

Improving the code for locall we arrive at the following pseudo code:

DM811 Exam Project
Sven Simonsen

October 26, 2008

Professor: Marco Chiarandini

Department of Mathematics and Computer Science
University of Southern Denmark, Odense

4 STOCHASTIC LOCAL SEARCH METHODS

Data: An array of lists: edges

An array of lists: vertices

A list of vertices: solution

Result: A list of vertices: solution
Start

Mark all vertices in solution as viable;

while There are still viable vertices do
vert «— random viable vertex;

create blank list of vertices: nolmp;
improve < 0; for All edges that contain vert do

if valumsge,si lrt]l;e h

“MSS o Hypergraphs
if vertex can be added to solution once vert is removed then
|_improve1:

end

else
| add vertex to nolmp;

end

end

end
end

if improve > 1 then DM811 Exam Project
remove vert from solution;

mark vert as not viable; Sven Simonsen

maximise solution by adding neighbors of vert;

for all vertices in nolmp do
| mark all vertices adjacent %Q/i:ecr)t%? Eszv%b?e;oos

end

end

else
| mark vert as not viable;

end

end
return solution; Professor: Marco Chiarandini

Experimental analysis shows the improvements to be considerable given the right instance
type(see section 4.2).

4 Stochastic local search methods

4.1 Random restart (RSS)

The easiest stochastic local search strategy at this point is to run Constructl hand the result
to Local2 and after a local maximum is found restart. This random restart is not an inherently
bad strategy, but it’s problem is that it does not exploit any of the information gathered by
previous runs and thus does many redundant calculations. On the other hand the strategy has
per definition 1o problegsseith &6t G siHhdtcl Sat B Hbter science

University of Southern Denmark, Odense

4 STOCHASTIC LOCAL SEARCH METHODS

4.2 TIterated local search (ILS)

We are already generating pretty good results with our random restart strategy. To increase
effectiveness even further we look to more elaborate stochastic local search methods. Assuming
we want to keep our general framework, specifically a local search that operates on maximal
stable sets only, limits the spectrum of methods at our disposal slightly. We have little oppor-
tunity to fiddle with the objective function, as worsening moves must be executed very carefully
to not break the maximality of a solution, and random steps in the (1,x)-swap neighborhood are
unlikely to help us escape the local maximum.

what we will RS E =@ e Hyp gor@(ﬂ,hsm were not part of
it, then restabilise by removing vertices a t to thewdes a orce (being careful not

to remove the vertices just added) and finally using a variant of Constructl to make the set

IdxIlal.” o0 OUl PDETTUIDALIOIL IIICCIHAITSIIT ITTAKES d THIOVE TIL d k){,l&‘hy}—dep HEIZIIDOITIO0W WIICTC
we specify k (the number of vertices to add) and x and y are chosen by the following cleanup
operations. Given the relatively controlled structure of this maneuver we can maintain our list
of edge values throughout increasing the speed of the following call to local2. Moreover we are
certain that we would need at least k (1,x)-swaps to return to the original situation by removing
the new vertices one at a time.

Pseudo code for Forced: DM811 Exam PrOject

Data: An array of lists: edges Sven Simonsen

An array of lists: vertices

The number of vertices to add: factoQctober 26, 2008

A list of vertices: solution

A list of edge values: ValueE

Result: A list of vertices: solution

A list of edge values: ValueE

Start

Create list of vertices not in solution: notV;

Create list of vertices: chosen;

Choose max(notV size, factor) ve1£1cesﬁggmlv{1%tc\o gr{ld Ecj{r(]{dtlo Chosen,;

for All vertices in Chosen do
add vert to solution;

for All edges that contain vert do
| increase valuek for this edge;

end
nd

or All edges that have valuefedge[=edge.size do
choose a random vertex in edge that is not in Chosen;

remove the random vertex from solution;

for All edges that contain the random vertex do
| increase valuek for this edge;

= O

end
end
Run a variant of Constrgggamn?@p“ma\m@%gg&t% W@p@a%g@aﬂmahty while
maintaining valuek; University of Southern Denmark, Odense

return solution and valueE;

10

5 EXPERIMENTS

Of course if the number of vertices forced into the solution was too small we risk for local2
to simply undo the additions in favor of adding those vertices that we just removed and we
would end up in the same local maximum. On the other hand adding large quantities of vertices
prevents reuse of already optimised parts of the hypergraph and consequently brings us closer
to a random restart in terms of computation time and expected solution quality. We return to
this matter in our experimental analysis of different settings for this factor.

5 eSS ON Hypergraphs

5.1 Testl

The first test runs ConstructA and Constructl a sampling of instances. The goal with this test
was to compare average solution quality of the two constructors to decide which of them would
be more suited to be the basis of a local search.

Instances tested against where T1-03, T1-06 , T2-03, T2-06, T3-03, T3-06, T4-03 and T4-06.
We thus take a sampling of every instance type. Every instance was tested with seeds 1 and 2

running 500 iteration per seed. DIM811 Exam PrOject

Calls looked like this: Sven Slmonsen

"java dm811le/ConstructA -i Instances/u-1000-10-10000-06.mss -o Outputl/CA-u-1000-10-10000-
06-s1.out -aux Auxput1/CA—u—1000—®¢Dcm&]6—26au2Q08)O -s 1"

Every candidate solution was saved to the parameter set with "-aux file" when encountered.
CPU-time spent on the local searches was also saved for each run to enable time comparisons.

The results show Constructl clearly outperform ConstructA in matters of solution size while the
time beautifully reflects the analysis of computational cost. We recall ConstructA runs in O(|E|)
time while Constructl has a runtime of (|V|+b|E|). Now in the tests ConstructA is only slightly
faster on instance types 1 and 2Rinfediiderehtarteihiateodini on Type 1, but when the edges
grow bigger it wins ground and at the end is about 5 times as fast as Constructl on instance
type 4 where edges dominate the picture.

5.2 Test2

The second test runs Locall and Local2 on the same 8 sample instances with seeds 1 and 2 given
1 minute per run. The goal of this test was to find out if the improvements done from Locall to
Local2 would give a noticeable increase in computation speed. To get a starting point to search
from both algorithms call Constructl prior to every search iteration

Calls looked like this:

"java dm81le/Locall -i Instance{(u 1000h10 10000-06.mss -0 Oug tQJLl/u 1000-10-10000-06-
s2.out -aux Auxput2/ Ll &P M@%gé?ﬁelcs an 88”‘433“” cien

n Vers| A Denmark” Gdense
We are only interested in number o 1terat10ns one in the given time period so we save this

11

5 EXPERIMENTS
information to the aux file, specified with "-aux file", at the end of each run.

The test yielded these results:

‘ Instance H iter Locall ‘ iter Local2 ‘ improvement factor ‘

T1-03 4993 11338 2.97
T1-06 4942 11036 2.23

T2-06 1082 2333 2.16

we | MSS ot H I h
T3-06 D 1 ype @@Fap S
T4-03 718 827 i 1.15

|z_l_ﬂﬁ 799 84_1’) 116

The picture is quite clear. For instances with small edges we see considerable improvement
yielding twice as many iterations in the same time frame, but on instances with big edges we see
only marginal improvement. In fact in instances of type 3 where edge size is highest and edge
number is lowest among instance types we deal with, it seams like the inflection point is reached
where the extra computations necessary to maintain the list of valid vertices outweigh the gain.

As a result of these tests | chose@M%[ZE@liElearrbhe i the (1,x)-swap neighborhood
since it did perform notably better than Locall most of the time and pretty equal in the worst
case, Sven Slmonsen

October 26, 2008
5.3 Test3

Now we want to find out what parameter to use in Forced when dealing with particular instance
types. The test designed for this purpose runs RSS with Constructl and Local2 as a base and
ILS with parameters (1,2,3,4,7,10,15) for evaluation. The same sampling of instances from the
4 types is used and we run with seeds 1 and 2. Time limit was 5 min.

Professor: Marco Chiarandini
Calls looked like this:

"java dm81le/Forced -i Instances/u-1000-50-1000-03.mss -o Output3/ILS3/u-1000-50-1000-03-
sl.out -aux Auxput3/ILS3/u-1000-50-1000-03-s1.aux -t 300 -s 1 -f 3"
Where "-f k" sets the parameter of forced to k.

One could argue that since the seed directly determines the start point, because Constructl is
only run once per call, more seeds should be tested. Given a general lack of time I decided this
was not feasible and the results indicate it not to be absolutely necessary since none of the more
intense searches got stuck in low local maxima.

Department of Mathematics and Computer Science
University of Southern Denmark, Odense

12

5 EXPERIMENTS

| RSS | ILS1 | ILS2 [ILS3 | ILS4 | ILS7 | ILS10 | ILS15 |

T1-03-s1 || 847 [870 [870 | 869 | 866 | 863 | 861 859
T1-03-s2 || 847 | 870 | 869 | 867 | 867 | 864 | 861 858
T1-06-s1 || 849 | 874 | 871 | 871 | 869 | 865 | 864 860
T1-06-s2 || 849 | 870 | 872 | 871 | 869 | 866 | 862 861
T2-03-s1 || 679 | 707 | 705 | 702 | 699 | 694 | 690 638
T2-03-s2 || 678 | 707 | 708 | 703 | 699 | 696 | 691 688
T9 (1 ol (70 73 7()7 7()2 HOKQ nQ (99 (09D
T2-06-s2 || 680 | 709 | 708 | 703 | 700 | 695 | 691 689
T3-0%sky| 432 | 956 55, | 954 | 954 | 954 53 953
MSS: on Hypergraphs
T3-06-sI || 951 | 956 | 955 4 95 | 9584 954 0] 953 953
T3-06-s2 || 951 | 957 | 955 | 954 | 954 | 954 | 953 953
14-Uo-S1 J1Z J10 J1o J14 J1o J14 J1o J14
T4-03-s2 || 913 | 916 | 915 | 914 | 914 | 914 | 914 913
T4-06-s1 || 913 | 916 | 915 | 915 | 914 | 914 | 914 914
T4-06-s2 || 913 | 916 | 915 | 915 | 914 | 914 | 914 914

Solutions are generally very close in
favoring low parameters but this is h

better insight.

Table 1: Solutions for Test3

DM811 Exam Project

3@%& sgﬁ%gﬁﬁhnicely. There seems to be a trend

a look at solution ranks to get a

October 26, 2008

| RSS | ILS1 | ILS2 | ILS3 | TLS4 | ILS7 | ILS10 | ILSI5 |

T1-03-s1 15 1 1 4 8 10 11 13
T1-03-s2 15 1 4 6 6 9 11 14
T1-06-s1 15 1 3 3 7 10 11 14
T1-06-s2 15 6 2 3 7 9 12 13
T2-03-s1 15 2 4 6 7 .10 12 13
T2-03-s2 16 %rofeSSOf: Mar%o Chla.?an :11n19 11 13
T2-06-s1 16 4 3 5 8 10 11 11
T2-06-s2 15 1 2 5 7 9 13 14
T3-03-s1 15 1 4 5 5 5 10 10
T3-03-s2 15 1 1 5 5 10 10 10
T3-06-s1 15 2 3 3 3 7 11 11
T3-06-s2 15 1 3 7 7 7 11 11
T4-03-s1 16 1 3 6 3 6 13 6
T4-03-s2 13 1 3 6 6 6 6 13
T4-06-s1 15 1 3 3 7 7 7 7
T4-06-s2 15 1 3 3 7 7 7 7

Table 2: Solution ranks for Test3 (ties are treated as min value)

Department of Mathematics and Computer Science
University of Southern Denmark, Odense

13

6 CONCLUSION

Distribution of solutionranks among algorithms

ILS15 — Fommmm e - 4 | |___4
ILS10 — o o l:D____.|
ILS7 Fooomm- | | |

0

£

- . MS$S-on Hypergraphs
RSS : - - o I o

rank

Fig DM 84 Lidzxam Rraject..
Sven Simonsen

Surprisingly the plot indicates that setting the parameter as low as 1 or 2 would be the opti-
mal choice regardless of type. Apparently even forcing only one new vertex into the solution
can be enough to escape from local QQEQQQ& 20, (pr ap-neighborhood. The reason for
this slightly odd result can presumably be found in the cleanup following a forced addition
of vertices. Because even adding 1 vertex can result in a cascading effect when the vertex is
part of many saturated edges and thus many vertices have to be removed. This then can open
up many opportunities for maximisation of the set resulting in a (x,k+y)-swap with large y-term.

Given it’s structure ILS1 is also the fastest of the flok, since it shuffles working solutions the
least, resulting in a strong case Fl’ﬁofﬁ%%ﬁ“omi“&éh%hléﬁawf&meter settings for all 4 types of
instances.

6 Conclusion

Since ILS with parameter k=1 came out slightly ahead on instances with big edges and shared
the top spot on instances with small edges I chose to calculate my final result table with this
heuristic. Seed was set to 1 except where I knew of a better solution from a prior runs with seed 2.

Department of Mathematics and Computer Science
University of Southern Denmark, Odense

14

6 CONCLUSION

‘ Instance H Instancefile ‘ Runtime sec ‘ Seed ‘ Solution ‘
T1-01 u-1000-10-1000-01.mss 300 1 871
T1-02 u-1000-10-1000-02.mss 300 1 869
T1-03 u-1000-10-1000-03.mss 300 1 870
T1-04 u-1000-10-1000-04.mss 300 1 869
T1-05 u-1000-10-1000-05.mss 300 1 869
T1-06 u-1000-10-1000-06.mss 300 1 874
T1.07 11-1000-10-1000-07 . 1mss 30)() 1 RH(K
T1-08 u-1000-10-1000-08.mss 300 1 871
T1-09 u-1000-10-1000-09.mss 300 1 868

SSon*Hvyperearaphs s
T2-01 || w1000-10-10000-014hk"] — "X~ =1 = 705
T2-02 u-1000-10-10000-02.mss 300 1 709
?A—UU u—lUumUU.lllbb JUYU I m
T2-04 1-1000-10-10000-04.mss 300 1 708
T2-05 1-1000-10-10000-05.mss 300 1 709
T2-06 u-1000-10-10000-06.mss 300 1 709
T2-07 1-1000-10-10000-07.mss 300 1 709
T2-08 u-1000-10-10000-08.mss 300 1 709
T2-09 1-1000-10-10000-09.mss 300 1 708
T2-10 u-10002 0k H8HA40 85 L o r B imds | 709
T3-01 u-1000=50Y 10001 e St T 3dM I~ 1 955
T3-02 u-1000-50- 1ByemSimorieen 1 956
T3-03 u-1000-50-1000-03.mss 300 1 956
T3-04 u-1000-50-1000-04, mss | 300 1 955
T3-05 1-1000-50-1626180&L 26, 2008 | 956
T3-06 u-1000-50-1000-06.1mss 300 1 957
T3-07 u-1000-50-1000-07.mss 300 1 955
T3-08 u-1000-50-1000-08.1mss 300 1 956
T3-09 u-1000-50-1000-09.mss 300 1 956
T3-10 u-1000-50-1000-10.mss 300 1 955
T4-01 u-1000-50-10000-01.mss 300 1 915
T4-02 u-1000-5Pr b0 2Nast0 Chiadffdini 1 916
T4-03 u-1000-50-10000-03.mss 300 1 916
T4-04 1-1000-50-10000-04.mss 300 1 915
T4-05 u-1000-50-10000-05.mss 300 1 916
T4-06 1-1000-50-10000-06.mss 300 1 916
T4-07 u-1000-50-10000-07.mss 300 1 916
T4-08 u-1000-50-10000-08.mss 300 1 916
T4-09 u-1000-50-10000-09.mss 300 1 916
T4-10 u-1000-50-10000-10.mss 300 1 917

Table 3: Solutions achieved with ILS1

Department of Mathematics and Computer Science
University of Southern Denmark, Odense

15

