
MSS on Hypergraphs

DM811 Exam Project
Sven Simonsen

October 26, 2008

Professor: Marco Chiarandini

Department of Mathematics and Computer Science
University of Southern Denmark, Odense

MSS on Hypergraphs

DM811 Exam Project
Sven Simonsen

October 26, 2008

Professor: Marco Chiarandini

Department of Mathematics and Computer Science
University of Southern Denmark, Odense

Contents

Contents 1

1 Introduction 2

2 Construction heuristics 3
2.1 Some basic observations . 3
2.2 ConstructA . 3
2.3 Construct1 . 4

3 Local search 6
3.1 More observations . 6
3.2 Local1 . 6
3.3 Local2 . 7

4 Stochastic local search methods 9
4.1 Random restart (RSS) . 9
4.2 Iterated local search (ILS) . 10

5 Experiments 11
5.1 Test1 . 11
5.2 Test2 . 11
5.3 Test3 . 12

6 Conclusion 14

MSS on Hypergraphs

DM811 Exam Project
Sven Simonsen

October 26, 2008

Professor: Marco Chiarandini

Department of Mathematics and Computer Science
University of Southern Denmark, Odense

1 INTRODUCTION
1 Introduction

This project deals with the uniform and unweighted version of the maximum stable set problem
on hypergraphs.
It looks at heuristic methods that aim to �nd good candidate solutions fast and analyses aspects
of the problem in an attempt to improve said methods both in matters of speed and solution qual-
ity. Implementations of the methods will be described and competing methods will be compared.

The heuristics discussed are the following:

A construction heuristic that starts with the full set of the hypergraph and removes vertices
randomly until the set is stable.

A construction heuristic that starts with an empty set and adds vertices randomly while main-
taining a stable set. This is done until the set is maximal.

A local search heuristic that tries to improve a maximal stable set by exploring the neighborhood
of (1,x)-swaps.

An improvement of this local search that exploits some observations about the problems struc-
ture.

A random restart stochastic local seach method.

An iterated local search method where escape steps are taken by adding vertices to the solution,
restabilise and then remaximilise.

The instances used have been renamed to avoid clutter on plots. u-1000-10-1000 will be called
T1 (for Type 1), u-100-10-10000 is T2, u-1000-50-1000 is T3 and u-1000-50-10000 is T4. The
instance u-1000-50-1000-05.mss would thus be called by the shorter name T3-05 (for Type 3
instance 5).

2

MSS on Hypergraphs

DM811 Exam Project
Sven Simonsen

October 26, 2008

Professor: Marco Chiarandini

Department of Mathematics and Computer Science
University of Southern Denmark, Odense

2 CONSTRUCTION HEURISTICS
2 Construction heuristics

2.1 Some basic observations

Choosing as many vertices of degree zero or one as possible to be part of the solution is never
a bad choice, since removing such vertices only enables us to add max 1 other vertice to the
solution which is no improvement of the solution and can not lead to one either. Armed with
this insight we can make this greedy choice once for any given instance and save it as a basis for
later restarts of the heuristic.

If you want to maintain a stable set adding a vertex to the candidate solution can never allow
new additions of vertices that were not available before.

2.2 ConstructA

A �rst cursory look at the problem suggested checking whether a vertex could expand your
candidate solution without destabilizing it would be costly, so I tried looking at the problem
from the opposite direction. Since a stable set is a set containing no complete edge, why not
start with the set of all vertices and remove vertices until stability is reached.

ConstructA does this by randomly choosing an edge fully contained in the candidate solution
and removing one of it's vertices from the solution. Since at least one edge is satis�ed in every
move we are sure that constructA will always reach stability, at which point the algorithm ter-
minates.

To e�ciently �nd the vertices in an edge and the edges a given vertex is part of the algorithm
works with an array of edges containing the list of all vertices in that edge for every edge and
likewise an array of vertices containing the edges that a vertex is part of. These data structures
do not change and are thus only computed once. During every run a list of fully contained edges
is maintained and consulted when a new edge has to be chosen randomly.

Pseudo code for constructA:

Data: An array of lists: edges
An array of lists: vertices
Result: A list of vertices: solution
Start
Create list of all vertices: solution;
Create list of fully contained edges: fullE;
while fullE is not empty do

comp ← a random vertex from a random edge in fullE;
remove comp from solution;
for All edges in vertices[comp] do

remove the edge from fullE;
end

end
return solution;

3

MSS on Hypergraphs

DM811 Exam Project
Sven Simonsen

October 26, 2008

Professor: Marco Chiarandini

Department of Mathematics and Computer Science
University of Southern Denmark, Odense

2 CONSTRUCTION HEURISTICS

This algorithm takes O(|E|) time to complete with the right implementation since it looks at
every edge exactly once and subsequently removes it from further consideration.

T1−03

T1−06

T2−03

T2−06

T3−03

T3−06

T4−03

T4−06

60
0

70
0

80
0

90
0

ConstructA

result

in
st

an
ce

Figure 1: ConstructA's performance on sample instances with 500 iterations per seed and 2
seeds.

We see it is an e�cient way of getting �rst useful results, it beats the SCIP on most Types
of instances taking under one second running time. But the method is open to improvement
since found solution are often not even maximal. It is also noteworthy that constructA has the
theoretical possibility to hit every maximal stable set in any given instance.

2.3 Construct1

Since constructA did not tend to terminate in maximal stable sets there was de�nitely room
for improvement, so I went back to the initial idea of adding vertices until the cadidate was
maximal. Checking from scratch if an edge becomes unstable when a vertex is added would take
O(b) time (where b is the common edge size in the current instance) and this would have to be
done for every edge that contains the vertex in question.

Instead we store the amount of vertices from the solution that belong to a given edge in an array
and update this information every time we add a new vertex to our solution candidate. Now
when we try if a vertex can expand our solution we just have to look these values up for every
edge it is contained in, if none of these is critical we can safely add the vertex to our solution and
update values accordingly. Alternatively one can maintain a list of valid vertices and remove
every vertice in an edge from this list as soon as the edge becomes critical, this is what I did in
my implementation.

4

MSS on Hypergraphs

DM811 Exam Project
Sven Simonsen

October 26, 2008

Professor: Marco Chiarandini

Department of Mathematics and Computer Science
University of Southern Denmark, Odense

2 CONSTRUCTION HEURISTICS
Using these structures the algorithm for construct1 would look like this:

Data: An array of lists: edges
An array of lists: vertices
Result: A list of vertices: solution
Start
Greedily add all vertices of deg<2 to solution;
Create an array of values for the edges: valueE;
Create a list of vertices we are free to choose: freeV;
while there are still vertices in freeV do

vert ← random vertex from freeV;
Add vert to solution;
for All edges in vertices[vert] do

increase valueE[edge] by one;
if The edge is critical (check valueE) then

Remove all vertices in edges[edge] from freeV;
end

end
Remove vert from freeV;

end
Return solution;

Here we are looking at running the while loop O(|V|) times checking b ∗ |E|/|V | in average per
iteration and removing one vertex. Taking a closer look we see that we will check every edge at
most b times or once per vertex in it, so we look up edges O(b|E|) times. In total this results in
O(|V|+b|E|) running time for construct1.

T1−03

T1−06

T2−03

T2−06

T3−03

T3−06

T4−03

T4−06

60
0

70
0

80
0

90
0

Construct1 compared to ConstructA

result

in
st

an
ce

Figure 2: Construct1 (shown in black) compared to ConstructA on the same samples with 1000
iterations per instance.

5

MSS on Hypergraphs

DM811 Exam Project
Sven Simonsen

October 26, 2008

Professor: Marco Chiarandini

Department of Mathematics and Computer Science
University of Southern Denmark, Odense

3 LOCAL SEARCH
Results are always maximal which could be the reason that Construct1 beats constructA by a
considerable margin. The single runs are a little slower than with constructA (ConstructA can
do 500 iterations in under a second even on Type 4 instances while Construct1 can "only" do
100 per second on those) but overall fast enough to be used as a basis for local search. This is
especially true since even single runs of Construct1 tend to beat 100 iterations of ConstructA.
Like with ConstructA we observe that Construct1 can result in every maximal set in the in-
stance. This is a nice property when one wants to use it as a basis for random restarts of local
search, since we avoid always ending up in the same local optima.

3 Local search

3.1 More observations

The neighborhood we will be looking at is that of a (1,x)-swap, meaning you remove one vertex
from the solution and then try to add as many of the adjacent vertices to the solution as possible.
We will soon see why it is e�cient to always maintain a maximal stable set when working with
this kind of neighborhood.

3.2 Local1

When pondering a local search heuristic for MSS on hypergraphs I realised that the main di�er-
ence to normal graphs were the many stages an edge could be in. In normal graphs an edge is
either empty or critical, either of which can be checked in constant time allowing quick assess-
ment of di�erent swaps. This is more complicated when dealing with hypergraphs. Assuming
we want to look at if removing a vertex from the solution can lead to improvement, what we
have to do is count the adjacent vertices that could be added once we remove the vertex we are
checking. Bear in mind that depending on instance the list of adjacent vertices could be quite
long and to check if their addition would be valid we have to count their adjacent vertices as well.

Since we are ultimately only interested in maximal stable sets, as these are strictly better can-
didates, we can safely restrict our local search to start with and maintain a maximal stable set.
This restricts the possible situations any local search step can start in, to a smaller set with
some nice properties that can be exploited to remove the need to look up Ω(b2) vertices every
time we wish to evaluate a remove. We will again keep track of the amount of vertices from the
solution that belong to a given edge.

Since we maintain a maximal stable set we will only have to consider the e�ect on edges that
have exactly one open position prior to our move. We will call these edges critical and since we
are keeping track of edge value they are easy to identify. If an edge is not critical we are certain
that it is not this edge that prevents the vertices in it from being added to the solution, so since
we maintain maximality we don't have to check any vertex from this edge and can safely move
on to the next.

Local1 implements this reasoning with a �rst improvement strategy, the pseudo code looks like
this:

6

MSS on Hypergraphs

DM811 Exam Project
Sven Simonsen

October 26, 2008

Professor: Marco Chiarandini

Department of Mathematics and Computer Science
University of Southern Denmark, Odense

3 LOCAL SEARCH

Data: An array of lists: edges
An array of lists: vertices
A list of vertices: solution
Result: A list of vertices: solution
Start
Create an array of edge values from solution: valueE;
while There are still viable vertices do

vert ← random viable vertex;
improve ← 0; for All edges that contain vert do

if valueE[edge]=edge.size-1 then
for All vertices in edge do

if vertex can be added to solution once vert is removed then
improve+1;

end
end

end
end
if improve > 1 then

remove vert from solution;
maximize solution by adding neighbors of vert;
update valueE;
mark all vertices in solution as viable;

end
else

mark vert as not viable;
end

end
return solution;

A call to Local1 starts by creating the correct edge value array wich takes O(b|E|) time. After-
wards the while loop is run until we reach a local maxima, how often this happens is hard to
approximate but we can take a closer look on the runtime of a single improvement consisting
of at most O(|V|) iterations. Under these iterations we consider every vertex of the solution as
removal candidate once and then have to look at all it's neighbours, but since every edge can
only be taken into consideration b times at most O(b2|E|) vertices are checked for addition to
the solution. Checking if a vertex can be added takes constant time times it's degree O(|E|),
because we use the edge value array. Finding an improvement thus takes O(|V |b2|E|2) time
while updating the arrays after the (1,x)-swap takes O(|E|2) time. While these bounds are not
very tight they show us that one local improvement is done in polytime in other words we have
a PLS-problem.

3.3 Local2

It is obvious that local1 does some redundant checking of possible removes so we would expect
a speedup if we could identify exactly which vertices need to be rechecked after a (1,x)-swap.
The x vertices added to the solution don't open up new possibilities so we concentrate on the
vertex that was removed.

7

MSS on Hypergraphs

DM811 Exam Project
Sven Simonsen

October 26, 2008

Professor: Marco Chiarandini

Department of Mathematics and Computer Science
University of Southern Denmark, Odense

3 LOCAL SEARCH

Edges that are not critical after the move give us no new opportunities, but the only ones that
contain the removed vertex and remain critical are those that where critical before and con-
tain a new vertex added in the move. Vertices in these edges don't change status either as the
removed vertex can not be inserted into the solution again without removing one vertex from
every critical edge that holds one of the x added vertices. In fact not even the added vertices
should be considered for removal as vertices adjacent to them would have been added before if
this was possible (with the exception of the recently removed vertex, but that would require to
remove all new vertices).

So what is there really to reconsider? Well the situation changed to the better for some vertices
adjacent to the removed vertex, vertices that we tried to add but could not without violating
stability. These vertices are now contained in fewer critical edges than before the move and
could maybe be added in a later move where one of the vertices adjacent to them is removed
from the solution. Because of this vertices in the solution that are adjacent to vertices we tried
but were unable to add during our move should be reconsidered for removal.

Improving the code for local1 we arrive at the following pseudo code:

8

MSS on Hypergraphs

DM811 Exam Project
Sven Simonsen

October 26, 2008

Professor: Marco Chiarandini

Department of Mathematics and Computer Science
University of Southern Denmark, Odense

4 STOCHASTIC LOCAL SEARCH METHODS
Data: An array of lists: edges
An array of lists: vertices
A list of vertices: solution
Result: A list of vertices: solution
Start
Mark all vertices in solution as viable;
while There are still viable vertices do

vert ← random viable vertex;
create blank list of vertices: noImp;
improve ← 0; for All edges that contain vert do

if valueE[edge]=edge.size-1 then
for All vertices in edge do

if vertex can be added to solution once vert is removed then
improve+1;

end
else

add vertex to noImp;
end

end
end

end
if improve > 1 then

remove vert from solution;
mark vert as not viable;
maximise solution by adding neighbors of vert;
for all vertices in noImp do

mark all vertices adjacent to vertex as viable;
end

end
else

mark vert as not viable;
end

end
return solution;

Experimental analysis shows the improvements to be considerable given the right instance
type(see section 4.2).

4 Stochastic local search methods

4.1 Random restart (RSS)

The easiest stochastic local search strategy at this point is to run Construct1 hand the result
to Local2 and after a local maximum is found restart. This random restart is not an inherently
bad strategy, but it's problem is that it does not exploit any of the information gathered by
previous runs and thus does many redundant calculations. On the other hand the strategy has
per de�nition no problems with getting stuck in local optima.

9

MSS on Hypergraphs

DM811 Exam Project
Sven Simonsen

October 26, 2008

Professor: Marco Chiarandini

Department of Mathematics and Computer Science
University of Southern Denmark, Odense

4 STOCHASTIC LOCAL SEARCH METHODS
4.2 Iterated local search (ILS)

We are already generating pretty good results with our random restart strategy. To increase
e�ectiveness even further we look to more elaborate stochastic local search methods. Assuming
we want to keep our general framework, speci�cally a local search that operates on maximal
stable sets only, limits the spectrum of methods at our disposal slightly. We have little oppor-
tunity to �ddle with the objective function, as worsening moves must be executed very carefully
to not break the maximality of a solution, and random steps in the (1,x)-swap neighborhood are
unlikely to help us escape the local maximum.

What we will do instead is force a number of vertices into the solution that were not part of
it, then restabilise by removing vertices adjacent to the ones added by force (being careful not
to remove the vertices just added) and �nally using a variant of Construct1 to make the set
maximal. So our perturbation mechanism makes a move in a (x,k+y)-swap neighborhood where
we specify k (the number of vertices to add) and x and y are chosen by the following cleanup
operations. Given the relatively controlled structure of this maneuver we can maintain our list
of edge values throughout increasing the speed of the following call to local2. Moreover we are
certain that we would need at least k (1,x)-swaps to return to the original situation by removing
the new vertices one at a time.

Pseudo code for Forced:

Data: An array of lists: edges
An array of lists: vertices
The number of vertices to add: factor
A list of vertices: solution
A list of edge values: ValueE
Result: A list of vertices: solution
A list of edge values: ValueE
Start
Create list of vertices not in solution: notV;
Create list of vertices: chosen;
Choose max(notV.size, factor) vertices from notV and add to Chosen;
for All vertices in Chosen do

add vert to solution;
for All edges that contain vert do

increase valueE for this edge;
end

end
for All edges that have value[edge]=edge.size do

choose a random vertex in edge that is not in Chosen;
remove the random vertex from solution;
for All edges that contain the random vertex do

increase valueE for this edge;
end

end
Run a variant of Construct1 that starts with solution and expands to maximality while
maintaining valueE;
return solution and valueE;

10

MSS on Hypergraphs

DM811 Exam Project
Sven Simonsen

October 26, 2008

Professor: Marco Chiarandini

Department of Mathematics and Computer Science
University of Southern Denmark, Odense

5 EXPERIMENTS

Of course if the number of vertices forced into the solution was too small we risk for local2
to simply undo the additions in favor of adding those vertices that we just removed and we
would end up in the same local maximum. On the other hand adding large quantities of vertices
prevents reuse of already optimised parts of the hypergraph and consequently brings us closer
to a random restart in terms of computation time and expected solution quality. We return to
this matter in our experimental analysis of di�erent settings for this factor.

5 Experiments

5.1 Test1

The �rst test runs ConstructA and Construct1 a sampling of instances. The goal with this test
was to compare average solution quality of the two constructors to decide which of them would
be more suited to be the basis of a local search.

Instances tested against where T1-03, T1-06 , T2-03, T2-06, T3-03, T3-06, T4-03 and T4-06.
We thus take a sampling of every instance type. Every instance was tested with seeds 1 and 2
running 500 iteration per seed.

Calls looked like this:
"java dm811e/ConstructA -i Instances/u-1000-10-10000-06.mss -o Output1/CA-u-1000-10-10000-
06-s1.out -aux Auxput1/CA-u-1000-10-10000-06-s1.aux -n 500 -s 1"
Every candidate solution was saved to the parameter set with "-aux �le" when encountered.
CPU-time spent on the local searches was also saved for each run to enable time comparisons.

The results show Construct1 clearly outperform ConstructA in matters of solution size while the
time beautifully re�ects the analysis of computational cost. We recall ConstructA runs in O(|E|)
time while Construct1 has a runtime of (|V|+b|E|). Now in the tests ConstructA is only slightly
faster on instance types 1 and 2 the di�erence being stronger on Type 1, but when the edges
grow bigger it wins ground and at the end is about 5 times as fast as Construct1 on instance
type 4 where edges dominate the picture.

5.2 Test2

The second test runs Local1 and Local2 on the same 8 sample instances with seeds 1 and 2 given
1 minute per run. The goal of this test was to �nd out if the improvements done from Local1 to
Local2 would give a noticeable increase in computation speed. To get a starting point to search
from both algorithms call Construct1 prior to every search iteration

Calls looked like this:
"java dm811e/Local1 -i Instances/u-1000-10-10000-06.mss -o Output2/L1/u-1000-10-10000-06-
s2.out -aux Auxput2/L1/u-1000-10-10000-06-s2.aux -t 60 -s 2"
We are only interested in number of iterations done in the given time period so we save this

11

MSS on Hypergraphs

DM811 Exam Project
Sven Simonsen

October 26, 2008

Professor: Marco Chiarandini

Department of Mathematics and Computer Science
University of Southern Denmark, Odense

5 EXPERIMENTS
information to the aux �le, speci�ed with "-aux �le", at the end of each run.

The test yielded these results:

Instance iter Local1 iter Local2 improvement factor
T1-03 4993 11338 2.27
T1-06 4942 11036 2.23
T2-03 1059 2281 2.15
T2-06 1082 2333 2.16
T3-03 5805 5976 1.03
T3-06 5635 5514 0.98
T4-03 718 827 1.15
T4-06 729 842 1.16

The picture is quite clear. For instances with small edges we see considerable improvement
yielding twice as many iterations in the same time frame, but on instances with big edges we see
only marginal improvement. In fact in instances of type 3 where edge size is highest and edge
number is lowest among instance types we deal with, it seams like the in�ection point is reached
where the extra computations necessary to maintain the list of valid vertices outweigh the gain.

As a result of these tests I chose to use Local2 in further searches in the (1,x)-swap neighborhood
since it did perform notably better than Local1 most of the time and pretty equal in the worst
case.

5.3 Test3

Now we want to �nd out what parameter to use in Forced when dealing with particular instance
types. The test designed for this purpose runs RSS with Construct1 and Local2 as a base and
ILS with parameters (1,2,3,4,7,10,15) for evaluation. The same sampling of instances from the
4 types is used and we run with seeds 1 and 2. Time limit was 5 min.

Calls looked like this:
"java dm811e/Forced -i Instances/u-1000-50-1000-03.mss -o Output3/ILS3/u-1000-50-1000-03-
s1.out -aux Auxput3/ILS3/u-1000-50-1000-03-s1.aux -t 300 -s 1 -f 3"
Where "-f k" sets the parameter of forced to k.

One could argue that since the seed directly determines the start point, because Construct1 is
only run once per call, more seeds should be tested. Given a general lack of time I decided this
was not feasible and the results indicate it not to be absolutely necessary since none of the more
intense searches got stuck in low local maxima.

12

MSS on Hypergraphs

DM811 Exam Project
Sven Simonsen

October 26, 2008

Professor: Marco Chiarandini

Department of Mathematics and Computer Science
University of Southern Denmark, Odense

5 EXPERIMENTS
RSS ILS1 ILS2 ILS3 ILS4 ILS7 ILS10 ILS15

T1-03-s1 847 870 870 869 866 863 861 859
T1-03-s2 847 870 869 867 867 864 861 858
T1-06-s1 849 874 871 871 869 865 864 860
T1-06-s2 849 870 872 871 869 866 862 861
T2-03-s1 679 707 705 702 699 694 690 688
T2-03-s2 678 707 708 703 699 696 691 688
T2-06-s1 679 706 707 703 698 694 692 692
T2-06-s2 680 709 708 703 700 695 691 689
T3-03-s1 952 956 955 954 954 954 953 953
T3-03-s2 952 956 956 954 954 953 953 953
T3-06-s1 951 956 955 955 955 954 953 953
T3-06-s2 951 957 955 954 954 954 953 953
T4-03-s1 912 916 915 914 915 914 913 914
T4-03-s2 913 916 915 914 914 914 914 913
T4-06-s1 913 916 915 915 914 914 914 914
T4-06-s2 913 916 915 915 914 914 914 914

Table 1: Solutions for Test3

Solutions are generally very close in size and outperform RSS nicely. There seems to be a trend
favoring low parameters but this is hard to see so we will take a look at solution ranks to get a
better insight.

RSS ILS1 ILS2 ILS3 ILS4 ILS7 ILS10 ILS15
T1-03-s1 15 1 1 4 8 10 11 13
T1-03-s2 15 1 4 6 6 9 11 14
T1-06-s1 15 1 3 3 7 10 11 14
T1-06-s2 15 6 2 3 7 9 12 13
T2-03-s1 15 2 4 6 7 10 12 13
T2-03-s2 16 2 1 5 7 9 11 13
T2-06-s1 16 4 3 5 8 10 11 11
T2-06-s2 15 1 2 5 7 9 13 14
T3-03-s1 15 1 4 5 5 5 10 10
T3-03-s2 15 1 1 5 5 10 10 10
T3-06-s1 15 2 3 3 3 7 11 11
T3-06-s2 15 1 3 7 7 7 11 11
T4-03-s1 16 1 3 6 3 6 13 6
T4-03-s2 13 1 3 6 6 6 6 13
T4-06-s1 15 1 3 3 7 7 7 7
T4-06-s2 15 1 3 3 7 7 7 7

Table 2: Solution ranks for Test3 (ties are treated as min value)

13

MSS on Hypergraphs

DM811 Exam Project
Sven Simonsen

October 26, 2008

Professor: Marco Chiarandini

Department of Mathematics and Computer Science
University of Southern Denmark, Odense

6 CONCLUSION

RSS

ILS1

ILS2

ILS3

ILS4

ILS7

ILS10

ILS15
2 4 6 8 10 12 14 16

Distribution of solutionranks among algorithms

rank

in
st

an
ce

Figure 3: Solutions ranked per instance.

Surprisingly the plot indicates that setting the parameter as low as 1 or 2 would be the opti-
mal choice regardless of type. Apparently even forcing only one new vertex into the solution
can be enough to escape from local maxima of the (1,x)-swap-neighborhood. The reason for
this slightly odd result can presumably be found in the cleanup following a forced addition
of vertices. Because even adding 1 vertex can result in a cascading e�ect when the vertex is
part of many saturated edges and thus many vertices have to be removed. This then can open
up many opportunities for maximisation of the set resulting in a (x,k+y)-swap with large y-term.

Given it's structure ILS1 is also the fastest of the �ok, since it shu�es working solutions the
least, resulting in a strong case in favor of chosing low parameter settings for all 4 types of
instances.

6 Conclusion

Since ILS with parameter k=1 came out slightly ahead on instances with big edges and shared
the top spot on instances with small edges I chose to calculate my �nal result table with this
heuristic. Seed was set to 1 except where I knew of a better solution from a prior runs with seed 2.

14

MSS on Hypergraphs

DM811 Exam Project
Sven Simonsen

October 26, 2008

Professor: Marco Chiarandini

Department of Mathematics and Computer Science
University of Southern Denmark, Odense

6 CONCLUSION
Instance Instance�le Runtime sec Seed Solution
T1-01 u-1000-10-1000-01.mss 300 1 871
T1-02 u-1000-10-1000-02.mss 300 1 869
T1-03 u-1000-10-1000-03.mss 300 1 870
T1-04 u-1000-10-1000-04.mss 300 1 869
T1-05 u-1000-10-1000-05.mss 300 1 869
T1-06 u-1000-10-1000-06.mss 300 1 874
T1-07 u-1000-10-1000-07.mss 300 1 868
T1-08 u-1000-10-1000-08.mss 300 1 871
T1-09 u-1000-10-1000-09.mss 300 1 868
T1-10 u-1000-10-1000-10.mss 300 1 870
T2-01 u-1000-10-10000-01.mss 300 1 705
T2-02 u-1000-10-10000-02.mss 300 1 709
T2-03 u-1000-10-10000-03.mss 300 1 707
T2-04 u-1000-10-10000-04.mss 300 1 708
T2-05 u-1000-10-10000-05.mss 300 1 709
T2-06 u-1000-10-10000-06.mss 300 1 709
T2-07 u-1000-10-10000-07.mss 300 1 709
T2-08 u-1000-10-10000-08.mss 300 1 709
T2-09 u-1000-10-10000-09.mss 300 1 708
T2-10 u-1000-10-10000-10.mss 300 1 709
T3-01 u-1000-50-1000-01.mss 300 1 955
T3-02 u-1000-50-1000-02.mss 300 1 956
T3-03 u-1000-50-1000-03.mss 300 1 956
T3-04 u-1000-50-1000-04.mss 300 1 955
T3-05 u-1000-50-1000-05.mss 300 1 956
T3-06 u-1000-50-1000-06.mss 300 1 957
T3-07 u-1000-50-1000-07.mss 300 1 955
T3-08 u-1000-50-1000-08.mss 300 1 956
T3-09 u-1000-50-1000-09.mss 300 1 956
T3-10 u-1000-50-1000-10.mss 300 1 955
T4-01 u-1000-50-10000-01.mss 300 1 915
T4-02 u-1000-50-10000-02.mss 300 1 916
T4-03 u-1000-50-10000-03.mss 300 1 916
T4-04 u-1000-50-10000-04.mss 300 1 915
T4-05 u-1000-50-10000-05.mss 300 1 916
T4-06 u-1000-50-10000-06.mss 300 1 916
T4-07 u-1000-50-10000-07.mss 300 1 916
T4-08 u-1000-50-10000-08.mss 300 1 916
T4-09 u-1000-50-10000-09.mss 300 1 916
T4-10 u-1000-50-10000-10.mss 300 1 917

Table 3: Solutions achieved with ILS1

15

